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Abstract: Forecasting non stationary time series data has been a difficult and complicated task using the classical
statistical predictive models such as linear regression (LR), autoregressive moving average (ARMA), Kalman filter
techniques (KFT), exponential smoothing (ES) and other econometric models. A single model may not be sufficient to
identify all the characteristics of non-stationary data. The purpose of this paper is to develop a hybrid model that
combines three different decomposition methods (EMD, EEMD, SEMD) with support vector regression (SVR) to
overcome the difficulty facing the single predictive models .The decomposition methods have the ability to analyze non-
linear and non-stationary data by separating them into several components at different resolutions, while SVR is very
robust with small training data and high-dimensional problem. The proposed hybrid models are evaluated using
extensive simulation experiments under different conditions (sample size, time series model, prediction steps). Results
show that the three hybrid models (EMD-SVR, EEMD-SVR, and SEMD-SVR) hybrid model is able to produce accurate
forecasting results. The best accuracy is achieved by SEMD-SVR and EEMD-SVR. Results from real data application
showed that SEMD-SVR was more accurate for ten steps ahead, whereas EEMD-SVR was more accurate for one step
ahead. Furthermore, the outcomes demonstrated that the three suggested models perform better than the hybrid
Ensemble Empirical Mode Decomposition with neural network (EEMD-NN), the hybrid Empirical Mode
Decomposition with neural network (EMD-NN) and the hybrid complete ensemble empirical mode decomposition with
support vector regression (CEEMDAN-SVR).
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1. INTRODUCTION

In statistical literature, many researchers have proposed various methodologies to improve the short and
long term forecasting accuracy during the past decades, see [1],[2] [3]. These methods can be classified into
two categories, namely, the classical statistical methods and the artificial intelligence (AI) based
algorithms. The classical statistical methods mainly include multiple linear regression( MLR),
autoregressive moving average (ARMA), Kalman filter techniques (KFT) and exponential smoothing (ES),
see [4], and [5]. Artificial intelligence methods include several methods such as neural network (NN),
Support vector regression (SVR), and echo state network (ESN) ...etc see [6], [7] and [8]. Although these
methods can provide some valuable improvements in terms of forecasting accuracy, most of these models
are linear predictors, which have difficulties in forecasting the hard nonlinear and non-stationary behavior
of time series data. Normalization techniques are sometimes used to improve forecasting accuracy [9];
however, the traditional normalization methods make assumptions that do not hold for most time series
[10]. Hence, there is a real need to find a suitable methodology deals with nonlinear and non-stationary
time series data. In literature, several researchers have utilized different hybrid methodologies to address
the problem of nonlinearity and non-stationary. By [11], it was suggested a time series forecasting model
combining neural networks (NN) and ARIMA models. They concluded that a hybrid technique benefits
from the special advantages of NN models and Autoregressive Integrated Moving Average (ARIMA) in
both linear and nonlinear modeling. Another hybrid model introduced by [12] which involved
Autoregressive Integrated Moving Average (ARIMA) and Support vector regression (SVR) in order to
improve forecasting accuracy. The proposed technique performed better than the logit/probit models. One
the other hand, lots of data decomposition methods such as the wavelet transform (WT) and the empirical
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mode decomposition (EMD), complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) and variational mode decomposition (VMD), have been utilized to forecast non-stationary
time series data, see [13] and [14]. Among these techniques, EMD and its extensions have been popular
due to the great ability on solving non stationarity and nonlinearity problems; see [15] and [16]. Further,
[17] proposed a hybrid EMD/EEMD-ARIMA model for long-term stream flow forecasting. When
compared to the EEMD-ARIMA and ARIMA models, the EMD-ARIMA hybrid model performs best in
projecting high and moderate stream flow values and matches best with the observations. One the same
way, [18] compared (EMD/EEMD/SEMD) with ARIMA model for forecasting temperature recorded data.
Results showed that SEMD/ARIMA model is more accurate than EMD/ARIMA and EEMD/ARIMA.
Later on, as in [19] it was applied a hybrid (EMD-SVR) based model for to forecast the directional
movements of electricity load demands and evaluates the performance on three load datasets. Results
revealed that the hybrid EMD-SVR outperforms the single SVR model. Similarly, [20] forecasted price
series using (EMD-SVR) model. The methodology's efficiency and predictability were tested using the
Chilli wholesale pricing index (WPI) dataset as an example. The findings showed that the performance of
the suggested model was much better than that of the standard SVR. In this context, [21] proposed a similar
hybrid forecasting method (EMD-SVR). According to the findings, when compared to SVR, the new
suggested hybrid prediction model, EMD-SVR, may significantly enhance prediction accuracy. By the
appearance of EEMD and SEMD, new hybrid models have been introduced. In [22], it was utilized a
hybrid (SEMD-NN) for forecasting Egypt stock market. By the criteria of some statistic loss functions,
SEMD-NN outperformed Holt-winters family model, empirical mode decomposition based on neural
network (EMD-NN) and ensample empirical mode decomposition and neural network (EEMD-NN) in
improving forecast accuracy.

Considering the previously mentioned, it is almost universally agreed in the forecasting literature that no
single method is best in every situation. This is mainly because real-world data are frequently complicated,
in nature and any single model may not be able to capture different patterns equally well. This has
motivated to develop an ensemble model i.e. combination of time series model and machine learning
technique which deals with both linear and nonlinear pattern and improve forecasting accuracy.

This paper suggests the use of hybrid methods in which the original data are decomposed into a set of
intrinsic mode function (IMF) components and one residue, which can improve the accuracy of forecasting
.The most common used methods are Empirical Mode Decomposition (EMD), Ensemble Empirical Mode
Decomposition (EEMD) and Statistical Empirical Mode Decomposition (SEMD), See [23] and [24]. The
principal idea is hybridizing each (EMD, EEMD, SEMD) with SVR, namely creating the (EMD-SVR,
EEMD-SVR, SEMD-SVR) models, to receive better solutions. The proposed models have the capability of
smoothing and reducing the noise (inherited from EMD, EEMD, and SEMD), the capability of filtering
dataset and improving forecasting performance (inherited from SVR). See [25],[26],[27] and [28].To show
the applicability and superiority of the proposed methods, a simulation study has been conducted under
different scenarios, in addition to real data application. The contribution of this study will add an important
scientific source to the statistical literature regarding modeling nonlinear and non-stationary time series
data. The results obtained from simulation and real data applications may provide a clear picture on the
most accurate estimation method for modeling non stationary time series data. In other words, it will be
useful in determining the best methods that should be used to model non-stationary data. In this way,
specialized and non-specialized researchers can easily analyze their data.

The rest of this paper is organized in the following manner: in section 2 we present the methods and
material related to our work. Section 3 is devoted for the proposed methods. Results and discussion are in
Section 4. Finally, conclusions are drawn in section 5.

2. Methodology

This section introduces our statistical methodology for forecasting non stationary and nonlinear time series
data. It consists of two main stages, starting by decomposition process, followed by predictive process. At
the decomposition process, we employee three different decomposition techniques namely EMD, EEMD,

and SEMD. At the second stage we utilize a advance powerful predictive model namely, support vector
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regression. Next, we shall present the details for the two stages and show how to combine them to get our

hybrid forecasting models.

2.1 Empirical Mode Decomposition(EMD)

Empirical Mode Decomposition (EMD) is a method of time-frequency domain signal decomposition that
has become widely used for output-only modal identification of structures, see [25]. The EMD method
decomposes a multi-component signal into a sequence of oscillatory waveforms known as IMFs that are
meant to be single-frequency components. An IMF is a function that meets two criteria: (i) In the entire
data set, the number of extrema and the number of zero-crossings must either be identical or differ by no
more than one, and (ii) at any point, the local maxima and local minima on the envelope represent its mean
value, which is zero. Sifting is the process of extracting an IMF. Assuming y(t) is the signal that needs to
be decomposed, the key EMD processes are as follows:
1. Connect every local minimum and maximum by utilizing a cubic spline to extract the lower and upper
envelopes.

2. Determine the value of m, (t), which is the mean of the upper and lower envelopes.

3. Find the difference between the mean m, (t)and signal y(t) and the,i; (t) = y(t) —m,(t), which

could be the first IMF.

4. Determine whether i, (t) fits the two IMF requirements given above. If i; (t)meets both conditions

to be an IMF, then i, (t)is the first IMF of the original signal y(t).

5. Ifi; (t)does not match the IMF criteria, the sifting process will be repeated, but this time the i, (t)

will be treated as the original signal until it meets the two IMF conditions.

6. After subtracting the original signal from the IMF, the sifting procedure is repeated to deconstruct

the data into n IMFs.
Finally, the signal y(t)may be written as follows:

y® = L 50 +ra (0 (1)
Where i (t) (j = 1,2,3, ... ... ,n) represents the original signaly(t)'s IMFs, andrn,(t)is a y(t)

residue. Each IMF should, ideally, just have one frequency component. Occasionally, one IMF will
have many frequency components, which are known as mode-mixing. For more details, see [21].

2.2 Ensemble Empirical Mode Decomposition (EEMD)

Ensemble Empirical Mode Decomposition (EEMD) uses a noise-assisted data analysis method suggested
by [25], which has a uniform time frequency spaceat various scales. When the signal is added to the
uniform white background, the signals with different scales are automatically projected onto proper scales
of reference established by the white noise in the background. The artificially created white noise has been
removed, and the recorded signal with numerous frequency components is projected onto appropriate
reference scales. The resultant decomposition retains its physical uniqueness while the EEMD also solves
the mode mixing problem. It comprises mostly of the following steps:

e Set the ensemble number and amplitude of white noise added sequence.

e The white noise is added to the signal y(t) that was measured.

V() = y() + wi(t) )
Where wy (t) is k — th white noise,yy (t) is k — ththe signal's measurement sequence.
* Apply EMD to y, (t), then decompose in to n IMFs.
yr(®) = ZjLqig; () + e (t) (3)
*Repeat step 2 and 3 , say m times, (i.e. k = 1,2,3, . . , m) using different white noise sequences,
maintaining the standard deviation of the simulated white noise ismaintained constant at 7, see [25].It
should be mentioned that the number of ensembles (i.e. m) must be set a priori in EEMD. However,
through increasing the ensemble's sample count, the extra white noise's influence can be decreased to a
negligible level. Generally, an ensemble size of a few hundred leads to a perfectresult.
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e (Calculate the final IMF as the ensemble average of each deconstructed IMF,
- 1 .
5 = —Xiqiki(© (4)

x(©) = XL, 5(0) + (0 )

Where 7;(t) is the  — th IMF that is the ensemble mean of the corresponding IMFs, which were calculated
from m white noise sequences, and ', (t)is the residues' average.

2.3 Statistical Empirical Mode Decomposition (SEMD)

The Statistical Empirical Mode Decomposition (SEMD) is a function that conducts empirical mode

decomposition for the sifting process using spline smoothing rather than interpolation. The smoothing

parameter is automatically determined by cross-validation .As in [23], the SEMD can be explained as

follows:

A. (Modified sifting): Consider the signal X to be decomposed, then employ a smoothing approach to
extract the first mode, h; ;.

(A-1) Find the local maximum (minimum) z of the signal hg;\, where hg)‘represents the original signal x.
(A-2) Create an upper envelope iy (lower envelopep;) by smoothing the maxima (minima) z using a
smoothing technique and a smoothing parameter J;.
(A-3) Calculate the local average my; = % (@iy + p,) by averaging the contents of both envelopes, then
find a candidate intrinsic modeh%'h = hf'h - my.
(A-4) Repeat the steps (A-1)—(A-3) for the signal h}_h until the signal h{,hat the jth iteration satisfies the
IMF conditions.
(A-5) Decompose the signal x = h; 5 + 13, Where ryis the remaining signal and h, , is defined as the limit
of hi .

B. (Conventional sifting) If the remaining signal r, = x - hih has an intrinsic oscillation mode, then , may
befurther decomposed by conventional sifting.

2.4 Support Vector Regression:

The primary idea of SVR is to execute linear regression and reduce structural risks in the high-dimensional
feature space that is produced by mapping the original input via a predetermined function @(x;).When a
collection of samples [xi_yi] is given, with i=1,2,....N ,y; is the output and x; is the input. The goal is
the output

f(x) =wT(x) + b (6)
RIf1= Il + C XX, 1(x yi o f () (7)

Where b is bias, W is regression coefficient and the penalty coefficient is C. R[f]is the structure risk, while
I(x; y; ,f(x;)) represents the loss function. The corresponding constrained optimization problem can be
formulated as:

min=|wll? + CEN, (& +¢0) @®)
sty —wlg(x)—b<e+§ )
wid(x)+b<e+§ (10)

£,60<0,i=12,...,n
Where(¢; + & )refer to the slack variables. The Lagrange multiplier was added, you may write the
regression function as:

f(x) = Yo (o — a)K(x;,x) + b (11)
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Where (a;,of) are the Lagrange multipliers that meet the criteria a; < 0,a; > 0 and}¥ ,(a; — af) =
0.K (x;, x) is the kernel function conforming to Mercer's theorem.

The Support Vector Regression (SVR) has drawn close attention due to its high generalization in solving
practical problems such as nonlinearity, small samples and over-fitting situations. The SVR is a learning
machine relies on the structural risk minimization inductive principle to achieve the generalized
performance. Unlike other Regression models that try to minimize the error between the real and predicted
value, the SVR tries to fit the best line within a threshold value. It uses a subset of training points in the
decision function (called support vectors), so it is also memory efficient. Due to the above mentioned
properties, the SVR has been successfully applied to various fields see [28], [29], [30]. These were the
reasons behind the use of SVR in our combined methods.

2.5 The Proposed hybrid Methods:

In this section, we describe the combined (SEMD, EEMD, EMD/SVR) approaches, for forecasting
problem.

Given a time series data, the training phase of the method consists of the following steps:
SEMD-SVR

1) SEMD is applied to the original time series in order to identify the IMFs, denoted as 7" , in
addition to the residue.

2) Having obtained the IMFs, the second step is to apply SVR for each of the extracted IMF, and for
the residue as well, getting the predictions (F1, F2, ...,Fn, Fr)

3) The third step is to find the final forecast which is summation of the predictions obtained from
the second step:

y=YjaF+E (12)
EEMD-SVR
For this combined method, the same previous procedure is applied, except, EEMD is applies instead
of SEMD.
EMD-SVR
For this combined method, the same previous procedure is applied, except EMD is applies instead of
SEMD.

The methodology for SEMD-SVR, EEMD-SVR and EMD-SVR are depicted in Figure 1.

orginal
series
[ SEMD [ EEMD EMD
l IMF1 IMF2 | R ... IMFn I Residue

SVR SVR SYR SVR
1 1 1 1 1
l F1 F2 Fn l Fr
]
pE——
I sum of
forecast

forecast

Figure 1.The chart of the methodology for SEMD-SVR, EEMD-SVR and EMD-SVR
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4. RESULT and DISSCUSION

4.1 Simulations Results

The In order to evaluate the practical performance of the proposed hybrid models, a simulation study

is conducted using the software package R with 1000 replications. The following conditions were set.

(1) Three different test functions, including different non stationary nonlinear time series models.
See Table 1 and Figure 2.

(2) Four different sample sizes (30, 50, 100, 200). This choice is arbitrary, to represent small,
medium and large sizes and to see the behavior of the model's performance as the sample size
increases.

(3) For SVR, the kernel used in training and predicting was "Radial". The degree needed for kernel
of type polynomial is the default order (order=3). However, one might consider changing
these parameters. It is left for further investigations.

(4) Three different prediction steps (one step ahead, five steps ahead, ten steps ahead). Since the
sample sizes are different, the percentages of training and test data will be different as well, see

Table 2.
Table 1.Time series models used in simulation
Name Formula Source
heav | Heav= 4 * sin(4 * pi * x) - sign(x - 0.3) - sign(0.72-x) | Donoho and Johnstone (1994)
Fgl Fg1=0.25* (4 * x-2) +2 * exp(-16 * (4 * x - 2)"2)) Fan and Gijbels (1995)
Doop | Dopp= (x * (1 -x))*0.5 * sin(2 * pi * 1.05/(x + 0.05)) | Donoho and Johnstone (1994)

Source: These functions are obtained from R Package (CVThresh)

v

o 50 100 150 =zooO o 50 100 150 =200 o 50 100 150 =zZoO

Figure 2.The Test functions used in simulation

Table 2.The percentages of training and test data used in simulation

N 1 step 5 steps 10 steps
Train % Test % Train % Test % Train % Test %
30 97% 3% 83% 17% 67% 33%
50 98% 2% 90% 10% 80% 20%
100 99% 1% 95% 5% 90% 10%
200 99% 1% 97% 3% 95% 5%

(5) The Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute
Error (MAE) are used to compare the performance of the hybrid models, as defined in these

Volume 10 Issue 3 2025

Equations

PAGE NO: 87



Degres Journal

ISSN NO:0376-8163

1 ! ~
MSE = Wzyﬂ(xi — %)? (13)
MAPE = <3N, [%=| x 100 (14)
1 ! 1,\
MAE = i Ixi — &l (15)

Where x; refers to actual time series value, ; is the estimated one, while N’ is the size of test data.
The mean absolute percentage error (MAPE) is the most widely used forecasting accuracy measurement,
see [31], [32] and [33]. MAPE has important, desirable features including reliability, unit-free measure,
ease of interpretation, clarity of presentation, support of statistical evaluation, and the use of all the
information concerning the error. Additionally, the MAPE is used not only for comparison purpose, but to
determine the quality of the model forecasting as well. A MAPE value of < 10% indicates high accurate
forecasting, 10% < MAPE <20% indicates good forecasting, 20% < MAPE <50% indicates reasonable
forecasting, and MAPE > 50% indicates inaccurate forecasting. Fortunately, our results for MAPE belong
to the range (<10%) indicate high accurate forecasting.

In addition to MAPE, we used two extra criteria namely, Mean Absolute Error (MAE) and Mean Square

Error (MSE).

Mean Absolute Error (MAE): The MAE is one of the most popular, easy to understand and compute

metrics. Lower the value of the better is our forecast. The models which try to minimize MAE lead to

forecast median.

Mean Square Error (MSE): The MSE is also among the popular methods used by statisticians to understand

how well is forecast. The interpretation of the numbers is much more difficult in comparison to MAE. The

models trying to minimize MSE lead to a forecast of the mean, See [34], for more different error’s metrics.

According to the three comparison criteria, several interesting remarks have been drawn as following:

The first model

1- The hybrid method (SEMD- SVR) is the best when the sample size is 30 and the prediction is for five
steps ahead, as well as when the sample size is 50 and the prediction is for each of (1 and 10) steps
ahead and also when the sample size is 100 and the prediction is for each of (1, 5 and 10) steps
ahead.

2- The hybrid method (EEMD-SVR) is the best when the sample size is 30 and the prediction is for ten
steps and also when the sample size is 50 and the prediction is for five steps and also when the
sample size is 200 and the prediction is for each of (1, 5 and 10) steps ahead.

3-  Hybrid method (EMD-SVR) is the best when the sample size is 30 and the prediction is for only one
step.

4- In general, when evaluating the three hybrid methods, it appears that 50% of the simulation
experiments in which the (SEMD-SVR) hybrid method outperforms the other methods. The hybrid
method (EEMD-SVR) came in second place with a percentage of 41.67%, and finally the method
(EMD-SVR) with a percentage of 8.33%.
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Table 3.The simulation results for the first model

Size (n) Criterion hybrid models Jump (h)
1 5 10

SEMD-SVR 7.244345 1.707047 14.3505

MSE EEMD-SVR 6.866971 3.100828 14.20504

EMD-SVR 6.036794 3.524499 14.28761

SEMD-SVR 4.906697 0.397286 4.460718

30 MAPE EEMD-SVR 4.880217 0.454506 4.469119
EMD-SVR 4.54474 0.482814 4.318393

SEMD-SVR 2.41765 1.153203 3.154286

MAE EEMD-SVR 2.357701 1.557204 3.131699

EMD-SVR 2.159245 1.65985 3.140921

SEMD-SVR 7.006086 7.070684 3.283772

MSE EEMD-SVR 7.197738 6.209192 3.902278

EMD-SVR 6.29743 6.29534 4.029156

SEMD-SVR 10.54437 44.13331 1.451814

50 MAPE EEMD-SVR 11.08269 40.46244 1.454752
EMD-SVR 10.9601 42.28653 1.563049

SEMD-SVR 2.26579 2.218669 1.487795

MAE EEMD-SVR 2.452038 2.062356 1.648200

EMD-SVR 2.419688 2.078763 1.667356

SEMD-SVR 4.058441 5.937194 6.929037

MSE EEMD-SVR 4.557971 6.24299 7.552217

EMD-SVR 5.074741 6.856831 7.531743

SEMD-SVR 28.37897 10.85229 9.910298

100 MAPE EEMD-SVR 29.44944 11.06491 9.131135
EMD-SVR 29.63245 12.52468 9.953065

SEMD-SVR 1.780268 2.143123 2.202621

MAE EEMD-SVR 1.912192 2.209373 2.319987

EMD-SVR 2.016215 2.328571 2.313869

SEMD-SVR 2.342658 3.297585 4.713886

MSE EEMD-SVR 2.288167 3.230656 4.615499

EMD-SVR 3.231589 4.392609 5.75379

SEMD-SVR 8.672174 14.03074 11.42612

200 MAPE EEMD-SVR 8.409924 13.63662 11.25382
EMD-SVR 10.47038 16.01157 12.53788

SEMD-SVR 1.269726 1.536662 1.875392

MAE EEMD-SVR 1.256398 1.523083 1.856695

EMD-SVR 1.533094 1.817879 2.100463

The second model

1- The hybrid method (SEMD-SVR) is the best when the sample size is (50, 100, or 200) and the
prediction is for each of (1, 5, and 10) steps.

2-  The hybrid method (EEMD-SVR) is the best when the sample size is 30 and the prediction is for each
of (1, 5 and 10) steps.

3- The hybrid method (EMD-SVR) is not the best for all sample sizes and for all steps of the second
model.

4- In general, it appears that (SEMD-SVR) outperformed the other two hybrid methods in 75% trails of
our simulation experiments. The hybrid method (EEMD-SVR) came in second place.
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Size (n) Criterion hybrid models Jump (h)
1 5 10

SEMD-SVR 0.098524 0.162799 0.241736

MSE EEMD-SVR 0.097596 0.161649 0.219801

EMD-SVR 0.104094 0.16256 0.256828

SEMD-SVR 1.334993 1.671993 3.96528

30 MAPE EEMD-SVR 1.326191 1.539372 3.113121
EMD-SVR 1.330007 1.655947 3.873418

SEMD-SVR 0.250609 0.327434 0.413225
MAE EEMD-SVR 0.250046 0.327174 0.390669
EMD-SVR 0.257265 0.328621 0.428886
SEMD-SVR 1.162163 1.237614 1.297024
MSE EEMD-SVR 1.173795 1.252895 1.341357

EMD-SVR 1.197914 1.278627 1.347201
SEMD-SVR 3.137363 4.079726 3.625562

50 MAPE EEMD-SVR 3.324551 4.374008 3.827155
EMD-SVR 3.343869 6.41765 3.988018
SEMD-SVR 0.868884 0.8833 0.908994

MAE EEMD-SVR 0.867135 0.887636 0.924143

EMD-SVR 0.877519 0.90031 0.927552

SEMD-SVR 0.969649 1.169587 1.212121

MSE EEMD-SVR 0.992622 1.181465 1.247189

EMD-SVR 1.011904 1.206323 1.249866

SEMD-SVR 4.78981 4.320906 4.637898

100 MAPE EEMD-SVR 5.078806 4.984837 6.003655
EMD-SVR 6.152788 4.821664 6.462972

SEMD-SVR 0.790722 0.865054 0.879609

MAE EEMD-SVR 0.793224 0.869359 0.892284

EMD-SVR 0.801262 0.877885 0.894936

SEMD-SVR 1.10848 1.105049 1.127035

MSE EEMD-SVR 1.128499 1.119555 1.148519

EMD-SVR 1.133327 1.13362 1.155328

SEMD-SVR 2.818742 3.150766 3.19363

200 MAPE EEMD-SVR 2.954661 3.250137 3.251609
EMD-SVR 2.999221 3.835977 3.282703

SEMD-SVR 0.83949 0.835964 0.846312

MAE EEMD-SVR 0.84615 0.842139 0.855041

EMD-SVR 0.842742 0.845573 0.858012

The third model:
1- The hybrid method (SEMD-SVR) is the best when the sample size is (50, 100, or 200) and the

prediction is for each of (1, 5, and 10) steps.

2-  Hybrid method (EEMD-SVR) is the best when the sample size is 30 and the prediction is for both (1

and 5) steps.

3-  The hybrid method (EMD-SVR) is the best when the sample size is 30 and the prediction is for 10

steps.

4- In general, when evaluating the three hybrid methods, it appears that 75% of the simulation
experiments excelled in the (SEMD-SVR) hybrid method, and the (EEMD-SVR) hybrid method came in
second place with a percentage of 16.67%, and finally the (EMD-SVR) method with a percentage of

8.33%.
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Table 5.The simulation results for the second model

Size (n) Criterion hybrid models Jump (h)
1 5 10
SEMD-SVR 0.117527 0.129328 0.268176
MSE EEMD-SVR 0.1107 0.12848 0.271894
EMD-SVR 0.111277 0.138608 0.253571
SEMD-SVR 18.59379 7.217024 4.811387
30 MAPE EEMD-SVR 12.39283 7.154187 4.426099
EMD-SVR 19.55334 7.763637 4.420855
SEMD-SVR 0.277138 0.289778 0.43828
MAE EEMD-SVR 0.267176 0.288181 0.441914
EMD-SVR 0.26735 0.300593 0.422363
SEMD-SVR 0.967863 1.294558 1.299513
MSE EEMD-SVR 0.994671 1.31855 1.360462
EMD-SVR 1.017952 1.300063 1.359382
SEMD-SVR 2.05108 3.23371 68.90272
50 MAPE EEMD-SVR 2.353634 3.498248 88.51766
EMD-SVR 2.093515 3.322041 62.26736
SEMD-SVR 0.790027 0.905487 0.909456
MAE EEMD-SVR 0.792234 0.917417 0.930316
EMD-SVR 0.804135 0.905800 0.931062
SEMD-SVR 0.967863 1.180922 1.251642
MSE EEMD-SVR 0.994671 1.18501 1.255211
EMD-SVR 1.017952 1.198078 1.259066
SEMD-SVR 2.05108 3.56269 3.114822
100 MAPE EEMD-SVR 2.353634 3.80556 3.461598
EMD-SVR 2.093515 4.759192 3.698619
SEMD-SVR 0.790027 0.86711 0.894951
MAE EEMD-SVR 0.792234 0.867525 0.897038
EMD-SVR 0.804135 0.874631 0.897106
SEMD-SVR 1.106837 1.116265 1.140787
MSE EEMD-SVR 1.128389 1.128762 1.151889
EMD-SVR 1.136593 1.135748 1.164765
SEMD-SVR 2.744174 1.84581 2.49725
200 MAPE EEMD-SVR 2.848205 1.956768 2.681864
EMD-SVR 3.020367 2.040381 2.981351
SEMD-SVR 0.837834 0.840803 0.851683
MAE EEMD-SVR 0.845696 0.845768 0.855771
EMD-SVR 0.847397 0.8485 0.861354

4.2 Application on real data

In addition to simulation experiments, we have evaluated the above three hybrid methods using Libyan
temperature data. This data set is monthly recorded from Jan-1998 to Dec- 2022, see Figure 5. The data
used in this study were collected from Libyan Center for Meteorology. Time series with trends, or with
seasonality, are not stationary since the trend and seasonality will affect the value of the time series at
different times. Therefore, it might be useful to check stationarity, trend and seasonality before applying the
three hybrid methods.

1. Stationarity Test:
Results of Augmented Dickey-Fuller Test showed that this series is not stationary (Dickey-Fuller = -
1.9145, p-value = 0.605).

2. Trend Test:

In addition to stationarity test we used Mann-Kendall Test for trend. Results conforms the presence of a
significant positive trend in temperature over the 25 years, with the p-value (0.00084).
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3. Seasonality Test:

Results obtained from "seaste" package using "isSeasonal" function, returned "TRUE" indicated the
presence of seasonality.
Accordingly, our three hybrid methods seems to be suitable, in which this series was decomposed into 3
IMF's by EMD, 3 IMF's by EEMD and 1 IMF's by SEMD.
Table 6 shows the numerical results of the mean squared error (MSE), the absolute mean squared error
(MAPE) and the relative mean squared error (MAE). Obviously, for one step forecasting it can be seen that
EEMD-SVR outperforms (EMD-SVR and SEMD-SVR), in addition to the two existing methods EMD-NN
and EEMD-NN. For five steps forecasting results revealed that EMD-SVR outperforms the other four
methods. For ten steps forecasting it has been observed that SEMD-SVR outperforms the other four
methods. Although this result may seem somewhat different from what we obtained from simulation
experiments regarding the superiority of the SEMD method and the EEMD method, the SEMD method is
still superior in the case of 10 prediction steps. As for the EEMD method, it excelled in the case of one-step
prediction. The reason behind this could be due to the nature and size of the data and the characteristics
inherent in its seasonal changes.

A remarkable notice is that the two existing artificial hybrid methods (EMD-NN and EEMD-NN)
performs worst compared to our three suggested methods for Libyan temperature data.

220 25 230 =5 20 x5
|

2000 2005 2010 2015 2020

Time

Figure 3.The Libyan temperature data from 1998 — 2022

Table 6.The comparing the accuracy of the proposed hybrid methods with some existing
artificial hybrid methods

Jump (h) 1 5 10

Criterion MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE
EMD-SVR 0.436985 0.018208 0.190956 0.186258 0.007797 0.05596 0.424103 0.017708 0.213546
EEMD-SVR 0.412914 0.017205 0.170498 0.394119 0.01652 0.188168 0.492991 0.020583 0.28261
SEMD-SVR 0.51593 0.021497 0.266184 0.23109 0.009664 0.084869 0.376424 0.015723 0.172277
CEMD-SVR | 0.4551138 | 0.01896307 | 0.20712855 | 0.2177832 | 0.009106592 | 0.08435374 | 0.5114078 | 0.02134974 | 0.3040779
EEMD-NN 0.614319 0.025597 0.377388 0.824319 0.034619 0.866208 0.952693 0.040176 1.280283
EMD-NN 0.493566 0.020565 0.243607 0.258151 0.010864 0.117559 0.423182 0.017841 0.320656
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5. CONCLUSION

In this paper we have presented three hybrid models which combines empirical mode decomposition
(EMD), ensemble empirical mode decomposition (EEMD), and statistical empirical mode decomposition
(SEMD) with support vector regression. The ultimate goal is getting accurate estimates for future time
series values. Simulation experiments and real data application have proved that the proposed
methodologies are expected to be easily implemented and can be used for different kinds of non-stationary
and nonlinear time series data under a variety of sample sizes (n=30,50,100,200) and forecasting steps
(h=1,5,10). The best accuracy was achieved by SEMD-SVR, then EEMD-SVR. Results from real-data
application using Libyan temperature data revealed that SEMD-SVR was more accurate for ten steps ahead
while EEMD-SVR was more accurate for one step ahead. Moreover, results showed that the three
suggested models outperform EMD-NN, EEMD-NN and CEEMDAN-SVR.
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