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Abstract—Shoplifting is a major concern for retail businesses, causing significant financial losses worldwide. This 

study presents a real-time detection framework that integrates Convolutional Long Short-Term Memory (ConvLSTM) 
networks with the Adam optimizer to enhance surveillance-based anomaly recognition. The framework used deep 
learning for extracting spatial features from video frames with LSTM units that capture temporal dependencies, 
allowing the system to identify subtle and complex patterns of suspicious behavior. The Adam optimizer is employed 
to adaptively adjust learning rates, ensuring faster convergence and stable model training.Experimental evaluation on 
the UCF-Crime dataset (shoplifting category) and a custom retail surveillance dataset demonstrates that the proposed 
method achieved an accuracy of 92%, outperforming other traditional state of art approaches. This research study also 
addressed key challenges such as class imbalance, environmental noise, and variability in recording conditions that 
helped to enhance the overall results of anomaly recognition. Hence, this research overall contributes towards building 
intelligent, scalable, and automated retail security systems capable of reducing theft-related losses. 
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1. Introduction 

Each year, businesses around the world suffer significant financial losses due to retail theft, especially shoplifting. Reports 
indicate that annual losses from such incidents amount to billions, directly impacting profitability and operational efficiency. 
Conventional monitoring is highly dependent on human intervention, which introduces limitations such as fatigue and decreased 
attention. Moreover, manual surveillance can lead to missed incidents, delayed responses and reduced overall security. To 
mitigate these challenges, retailers have invested in extensive security measures, such as surveillance camera systems [1] [2]. 
Traditional video surveillance also has many limitations in preventing shoplifting. Shoplifting can occur in blind places or 
locations that are not captured by cameras. Security professionals may not be continually monitoring the feeds, and they may 
overlook suspicious activities. Traditional systems frequently require a manual examination of footage to detect incidents, which 
can be time-consuming. Motion detection may cause false alerts, wasting security resources. These limitations underscore the 
need for more sophisticated and intelligent monitoring technologies that can successfully prevent and detect shoplifting. 

 
Modern surveillance technology is transforming the way of security, especially in retail settings. With AI-powered analytic, 

these systems can detect suspicious activity and warn personnel immediately, allowing for quick action to avoid stealing. 
Advanced motion detection capabilities can generate alarms for unusual activity, reducing false alerts and allowing security 
personnel to focus on serious threats. Furthermore, facial recognition technology can recognize and alert security to known 
shoplifters, allowing for proactive loss prevention measures. Using these cutting-edge capabilities, retailers may drastically 
improve their security posture and secure their assets more effectively [3] [4].  

In this research paper, automation of shoplifting detection using the hybrid deep learning model based on Convolutional 
Long Short- Term memory network is proposed. The ConvLSTM architecture is employed to process frame sequences from 
surveillance videos to detect patterns that indicate shoplifting, such as hidden goods or suspicious movements. By learning 
regular shopping behaviour patterns, LSTMs can identify aberrant acts that may imply stealing [5]. 

For optimization of the proposed model, Adam optimizer is used that dynamically adjust the learning rates of the model 
using first and second moment gradient estimates. This improves convergence speed and stability of the model, making it suitable 
for real time application [5], [6]. 
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The structure of this paper is as follows: Section II reviews the related work on shoplifting detection and video-based 
anomaly analysis. Section III discusses the detailed purposed methodology, with ConvLSTM architecture and optimization 
strategy. Section IV outlines the data set, experimental setup, and the evaluation metrics to check the performance of the model. 
Section V presents the results and analysis of the framework. Lastly Section VI provides a summary of future research directions. 

 

2. Literature Review 

The detection of anomalies in video surveillance, for shoplifting situations, is strongly dependent on studying past 
methodologies in order to enhance accuracy and efficacy. Various deep learning models, including CNN, RNN, and hybrid 
architectures, have been used to improve detection accuracy and effectiveness. This section provides an overview of important 
research works that have contributed to the field of detecting unusual activities.  

 

Deep learning models used for video surveillance improved anomaly detection over early methods that rely on hand-designed 
features and statistical models. Traditional methods create many problems in dynamic real-world situations which can also be 
solved using neural networks to extract spatial and temporal patterns and hence improving classification accuracy [7]-[9]. 
Spatiotemporal analysis is very important for recognizing anomalies in surveillance videos. The Incremental Spatiotemporal 
Learner (ISTL) model, enhances real-time detection by using learning strategies. In recent deep learning development, CNN-
based architectures have been found efficient in handling real-time video data for anomaly classification [10], [11]. 

 

Several deep learning architectures have been developed and designed to enhance the anomaly detection performance of 
the model. Hybrid models, such as CNN-BiLSTM, effectively capture spatial and temporal dependencies, which leads to good 
classification accuracy. Attention-based mechanisms optimize these models by focusing on critical regions within a video frame. 
Influence-aware attention networks refine detection in complex and more crowded surveillance scenarios by using location-
based and motion- based weighting techniques [4]– [6]. 

Extracting meaningful features is a very important step in anomaly detection, because it helps in eliminating irrelevant 
information while containing essential patterns. Techniques such as deep autoencoders and CNN-based models have been 
widely used for feature extraction in video analysis. Hybrid models, such as CNN-BiLSTM architectures state effective real-
time classification of anomalies by safeguarding both spatial and temporal dependencies. Convolutional autoencoders have been 
used to learn latent representations of normal and abnormal activities, in improving the accuracy of anomaly detection 
frameworks [1], [8]. 

Accurately recognizing human actions plays a very important role in anomaly detection for surveillance 
applications. Several studies have been done on the deep learning-based methodology, such as hybrid deep evolving 
neural networks that combine ConvLSTM and Long-term Recurring Convolutional Networks (LRCNs), to enhance the 
classification of human activities. Two-stream convolutional networks, which process spatial and motion information 
simultaneously, have been widely used to improve anomaly detection accuracy in security-sensitive environments, 
which is of utmost importance [2] [3]. 

Table 1 gives a summary of existing research contributions, their datasets, important evaluation parameters, and 
methodologies used. 

Table 1: Summary of Various State of Art methods for Video Anomaly Detection 
 

Authors Research Contributions Dataset Used Performance  Metrics 

Duong et al. [12] 
(2023) 

Surveyed deep learning methods for video 
anomaly detection 

Multiple public datasets Accuracy, Precision, Re- call 

Nawaratne et al. 
[13] (2020) 

Proposed ISTL framework for real time surveillance CUHK Avenue Dataset Detection Rate, False Alarm 
Rate 

Nithesh et al. [14] 
(2022) 

Developed CNN-based deep learning model for 
anomaly detection 

UCF-Crime Dataset Accuracy, F1-score 

Jain et al. [15] 
(2024) 

Introduced CNN model for improved 
spatiotemporal anomaly recognition 

ShanghaiTech Dataset Precision, Recall, Accu- racy 

Muneer et al. [16] 
(2023) 

Created a benchmark dataset and CNN-
BiLSTM model 

Custom Shoplifting Dataset Accuracy, Sensitivity, 
Specificity 

Chang et al. [3] 
(2022) 

Designed a contrastive attention module for 
weakly supervised learning 

UCSD Pedestrian Dataset Precision, ROC-AUC 
Score 

Zhou et al. [8] 
(2020) 

Introduced an attention-driven loss function for 
improved generalization 

UMN Dataset Detection Accuracy, F1- score 

Zhang et al. [9] 
(2022) 

Developed influence-aware attention model for 
surveillance 

Subway Entrance Dataset Precision, Recall, False Alarm 
Rate 
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Nasaruddin et al. 
[10] (2020) 

Applied spatiotemporal attention mechanism with 
3D CNN 

VIRAT Dataset Accuracy, Computational 
Efficiency 

Ullah et al. [11] 
(2021) 

Combined CNN and BiLSTM for real-time 
video anomaly detection 

XD-Violence Dataset F1-score, Sensitivity 

Ribeiro et al. [1] 
(2020) 

Designed convolutional autoencoder 
for spatiotemporal anomaly detection 

UCSD Ped2 Dataset Precision, Detection Rate 

Dasari et al. [2] 
(2022) 

Used ConvLSTM and LRCN for human activity 
recognition 

Kinetics-600 Dataset Accuracy, Recall, Con- fusion 
Matrix 

 
 

3. Research Background 
 

A. ConvLSTM Architecture 

The proposed model utilizes a Convolutional Long Short- Term Memory (ConvLSTM) network, designed to process 
spatiotemporal data effectively. Unlike standard LSTM models, ConvLSTM integrates convolutional operations within its 
gates, preserving the spatial structure of input frames. This architecture is particularly beneficial for video-based anomaly 
detection, where both appearance (spatial features) and movement (temporal dependencies) play a crucial role. Figure 1 shows 
layered architecture of ConvLSTM model.  

 

Fig. 1: Block diagram of the LSTM-based architecture. 

Following are the key components of the ConvLSTM Architecture: 
Input Gate: 

      It determines how much of the new input should be added to the cell state. Convolution operation of input gate using input Xt 
and hidden state Ht-is given by  
�t= �[��� ∗  ��  +  �ℎ� ∗  �� − 1 +  ��]                (1) 

Forget Gate:  
It determines “ft” whatever information is to be forget from previous gates. 

   �t= �[��� ∗  �� +  �ℎ� ∗  �� − 1 +  ��]          (2) 

Cell state: 
It Stores long-term memory over time which is updated with the input gate, forget gate, and cell input. 

       �t= �� ⊙ �� − 1 + �� ⊙ ���ℎ [��� ∗ ��  + �ℎ� ∗ �� − 1 + ��](3) 

     Output Gate: 
It Determines how much of the cell state will be disclosed to the output. 

     �t= �[��� ∗ ��  + �ℎ� ∗ �� − 1 + ��]                            (4) 

   Hidden state 
    It determines hhe final output of the ConvLSTM cell at time t which combines the output gate and the cell state. 
    � = �[�� +  �]                                                     (5) 

where Xt represents the input at time t, Ht is the hidden state, Ct is the cell state, ⊙represents the Hadamard product, and σ is the 
activation function of the sigmoid. Equations 1,2,3,4 and 5 shows the formula for calculating Input gate, Forget gate, Cell state, 
Output gate, and hidden State respectively [12]-[15]. 

In a ConvLSTM-based shoplifting detection architecture, layers such as ConvLSTM2D Layers, MaxPooling3D Layers, and 
Dense play particular roles in spatial, temporal, and decision-making activities. 

 
 

ConvLSTM2D Layers: At the core of the model are Con- vLSTM2D layers, responsible for extracting spatio-temporal patterns 
from video sequences. Each layer processes a sequence of 2D feature maps, ensuring simultaneous spatial and temporal      feature 
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learning. It identifies the Movement/ Features such as Person's posture, Suspicious hand movement, Object (e.g., item being taken) 
[16]. 

MaxPooling3D Layers: MaxPooling3D is a down sampling layer that selects the maximum value within a 3D sliding window 
to reduce the size of 3D feature maps (usually derived from videos or volumetric data). It works with five-dimensional form tensors 
given by (B, T, H, W, C). Here B indicates batch size, T indicates temporal dimension (number of frames), H, W indicates height 
and width and C indicates channels.  MaxPooling3D layer with Pool_size= (pt, ph, pw) and Stride= (st, sh, sw). 

Y[t, i, j, c]  = max {X [t′, i′, j′, c]}  
 t′ ∈ [t ∗ ��, t ∗ �� +  �� − 1 ] 
 i′ ∈ [i ∗ �ℎ, i ∗ �ℎ +  �ℎ − 1 ] 
 j′ ∈ [j ∗ ��, j ∗ �� +  �� − 1] 

Here Y is the output tensor, pt, ph, pw be the pooling window size (time, height, width), st, sh, sw be the strides, c be the channel 
index (not pooled). 

Dense Layer: After feature extraction and pooling, the dense layer performs the final classification. The extracted features are 
flattened and passed through a fully connected layer with a sigmoid activation function, which determines the probability that a 
particular instance is a shoplifting or not: 

    � = �[�� +  �]   
where x is the input feature vector, W is the weight matrix, b is the bias, and σ represents the activation function. 

Optimization with Adam 
In this work, the ConvLSTM network is optimized using the Adam optimizer, a widely used method in deep learning due to its 

robustness and efficiency. Adam integrates the benefits of AdaGrad, which adapts learning rates for each parameter, and RMSProp, 
which adjusts learning rates based on recent gradient magnitudes. Unlike traditional stochastic gradient descent, Adam computes 
individual adaptive learning rates for different parameters by combining estimates of both the first-order moment (mean of 
gradients) and the second-order moment (variance of gradients). This mechanism makes it highly effective for complex 
spatiotemporal models such as ConvLSTMs, where gradient magnitudes may vary across layers. With default hyperparameters 
(β1=0.9, β2=0.999, ϵ=10−7) and an initial learning rate of 3×10−4, Adam provides fast convergence, numerical stability, and 
reduced sensitivity to manual tuning. Consequently, the optimizer enhances the ability of the proposed model to detect shoplifting 
activities by efficiently capturing motion dynamics in video data while mitigating challenges like vanishing and exploding 
gradients [17]-[19]. 
Mathematical Formulation of Adam 
Adam optimizer combines the benefits of momentum-based updates and adaptive learning rates. The optimization process 

follows these equations: 
First moment estimate (mean): 

                         �� = [�1 ∗ �� − 1 + (1 − �1) ∗ ��]                               (6) 
Second moment estimate (variance): 

                               �� = [�2 ∗ �� − 1 + (1 − �2) ∗ �2�]                 (7) 
Bias-corrected first moment estimate: 

                                      ��� = ���
(1 − �1)�� �    (8) 

Bias-corrected second moment estimate: 

��� = ���
(1 − �2)�� �    (9) 

 
Parameter update: 

                           �� = ��� − 1 − �α ∗
���  ⁄ �� + √�����               (10) 

Here Equation (6) defines the first moment estimate, where an exponential moving average of the gradients is calculated to 
capture momentum. Equation (7) shows the second moment estimate, which tracks the average of squared gradients to measure 
their magnitude. Since both of these estimates start from zero, Equation (8) and Equation (9) apply bias correction to obtain more 
accurate values of the first and second moments during the initial iterations. Finally, Equation (10) gives the parameter update 
rule, where the corrected first moment is normalized by the square root of the corrected second moment, scaled by the learning 
rate, and adjusted with a small constant to avoid division by zero. Together, these equations describe how Adam adapts the learning 
rate for each parameter, making training more stable and efficient. Additionally, �� and �� are the first and second moment 
estimates, �� is the gradient at time step t. �1 and �2 are the exponential decay rates for the moment estimates. α is the learning 
rate, � is a small constant for numerical stability. 

By integrating momentum and adaptive learning rates, Adam achieves faster convergence compared to classical optimizers, 
making it well-suited for training the proposed ConvLSTM-based shoplifting detection framework.  
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Dataset Used 
For our experiments, we utilize the UCF-Crime dataset, specifically focusing on the shoplifting category, combined with a 

custom-collected retail surveillance dataset. The surveillance dataset was carefully annotated into two categories: shoplifting and 
normal behaviour clips. To ensure balanced analysis, all videos were pre-processed into fixed-length segments, resized to 128×128 
pixels, and normalized. This hybrid dataset setup not only provides diversity in shoplifting scenarios but also enhances the 
robustness of the model by including real-world variations such as lighting changes, crowd density, and camera angles. Finally, 
the dataset was split into the ratio of 70%, 15%, and 15% for training, validation, and testing, ensuring that no overlap of video 
clips occurred across splits. 

 

4. Proposed Method 

The proposed framework for shoplifting detection employs Convolutional LSTM (ConvLSTM) networks, optimized with Adam, 
to jointly capture spatial features from video frames and temporal patterns of human actions. Figure 2 illustrates the overall 
structure of the ConvLSTM- based shoplifting detection model, demonstrating the flow of information through its various 
components. The system is organized into the following stages: 

 
Data Acquisition and Preprocessing 

 
Surveillance videos are divided into overlapping clips of 16–32 frames using a sliding window. Each frame is resized to 128×128 

pixels and normalized. To improve generalization, data augmentation techniques such as horizontal flipping, brightness 
adjustment, and random cropping are applied. Since shoplifting events are much fewer than normal activities, oversampling and 
focal loss are used to balance the dataset and handle class imbalance effectively. 

 
Spatial Feature Extraction 

 
Each frame is passed through a Time Distributed CNN encoder composed of Conv2D and MaxPooling layers. This encoder 

extracts key spatial features such as shelves, objects, and hand gestures, while preserving positional information. The encoder 
produces a sequence of spatial feature maps for every frame. 

 
Temporal Modeling with ConvLSTM 

 
The extracted feature maps are processed through ConvLSTM2D layers, which simultaneously model spatial locality and 

temporal dependencies. This enables the detection of behavioural patterns such as repetitive reaching, concealment of items, or 
unusual object interactions. The ConvLSTM output represents a spatiotemporal embedding of the video clip. 

 
Classification Layer 

 
The ConvLSTM output is passed through a MaxPooling3D layer to reduce dimensionality and highlight the most informative 

spatiotemporal features. A dropout layer is applied to avoid overfitting. Finally, a fully connected Dense layer with sigmoid 
activation provides the probability of shoplifting versus normal activity. 

 
   Optimization with Adam 
 

Training is conducted using the Adam optimizer with a learning rate of 3×10-4, β1=0.9, β2=0.999, ϵ=10−7. Adam is selected 
because it adaptively adjusts the learning rate for each parameter, ensuring stable convergence and faster optimization in complex 
ConvLSTM models. 

 
Inference Strategy 

 
During real-time operation, the video stream is divided into successive clips, each processed through the model. To minimize 

false positives, a temporal smoothing mechanism (such as majority voting or probability thresholding across consecutive clips) is 
used. An alert is triggered only when the predicted probability of shoplifting remains consistently above a threshold (e.g., 0.8) for 
multiple clips. 

Figure 2 shows block diagram of the complete workflow of the proposed shoplifting detection system. The process begins 
with the collection of video data, which is carefully preprocessed by resizing each frame to a fixed resolution, applying 
augmentation techniques to improve data diversity, and normalizing pixel values for uniformity. These prepared frames are first 
analyzed by a Convolutional Neural Network (CNN), which extracts important spatial characteristics such as shapes, textures, and 
object details. The spatial features are then passed to a Convolutional Long Short- 

Term Memory (ConvLSTM) network, which learns the sequence of movements and temporal patterns present across 
consecutive frames. To refine the output, a global average pooling layer condenses the feature maps, while a dropout layer is 
introduced to avoid overfitting. The final stage involves a fully connected dense layer that classifies the activity into two categories: 
shoplifting or normal behavior. During training, the Adam optimizer plays a crucial role by adjusting the model     parameters 
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based on the computed loss, ensuring faster convergence and stable learning throughout the network. This structured flow enables 
the system to effectively combine spatial and temporal information for reliable detection of shoplifting incidents. 

 

5. Results and Discussion 

The performance of the ConvLSTM-based shoplifting detection model has been calculated using standard classification metrics, 
including accuracy, precision, recall, and F1 score. The proposed ConvLSTM model achieves the highest performance across all 
metrics, with 92% accuracy, 90% precision, 91% recall, and 91% F1-score. In comparison, the CNN-only model achieved an 
accuracy of 82%, while the LSTM-only model lagged behind at 79%. The hybrid CNN+LSTM improved performance to 86%, 
but still fell short of the proposed ConvLSTM. 

 
Comparison with Baseline Models 

The proposed ConvLSTM model outperformed traditional CNN and LSTM-based models by leveraging both spatial and 
temporal feature extraction. Unlike standalone CNN models, which primarily capture spatial details, or LSTMs, which process 
sequential dependencies, ConvLSTM effectively combines both aspects, leading to improved classification performance see table 
2. 

However, despite its advantages, challenges remain in identifying subtle shoplifting activities. Future work should explore further 
refinements, including hybrid deep learning approaches and real-time adaptation techniques, to improve the effectiveness of the 
model. 

Table 2: Comparative Analysis of the proposed ConvLSTM model with other models. 
 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

CNN-only 82 80 78 79 

LSTM-only 79 77 75 76 

CNN+LSTM 86 84 85 84 

Proposed ConvLSTM 92 90 91 91 

 
 

Fig. 2: Block diagram of the proposed shoplifting detection system. 

6. Discussion 

A. Strengths 
The proposed framework demonstrates several strengths that make it highly effective for real-world shoplifting detection. 

By integrating convolutional layers with ConvLSTM units, the system successfully captures both spatial details and 
temporal patterns, allowing it to recognize complex behaviours beyond static appearances. The use of the Adam optimizer 
further strengthens the model by ensuring faster and more stable convergence during training, even with large and high-
dimensional data. Robust preprocessing steps, including normalization, augmentation, and class balancing, enhance 
adaptability to variations in lighting, camera angles, and class imbalance issues. Importantly, the model is validated on 
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both public and custom surveillance datasets, making it directly relevant to practical retail security scenarios. With higher 
accuracy and reduced false alarms compared to conventional methods, the framework shows strong potential for real-time 
deployment and scalability in modern retail environments. 

 

B. Limitations 
    Although the proposed ConvLSTM framework shows promising results for detecting shoplifting, certain limitations 

remain. First, the system heavily depends on the quality of surveillance footage. Low-resolution videos, poor lighting, or 
crowded scenes can reduce the accuracy of feature extraction and make it difficult to distinguish between normal shopping 
gestures and suspicious actions. Second, the model requires large amounts of annotated training data, particularly for the 
minority class (shoplifting instances). Since real shoplifting events are relatively rare and often not publicly available, the 
model may face challenges of class imbalance, leading to potential bias toward normal behavior. Third, while ConvLSTM 
is effective in modeling spatiotemporal features, it is computationally intensive. Real-time deployment in large retail 
environments may require high-end GPUs or optimized hardware to process continuous streams efficiently. Finally, the 
system may generate false positives in scenarios where legitimate customer actions resemble suspicious movements, which 
could lead to unnecessary alerts. Addressing these issues through improved dataset collection, lightweight model design, 
and the integration of additional contextual information remains a direction for future work. 

C.  Future Directions 

For the effectiveness of the proposed model in this research paper, the following future improvements are given: 

Expanding dataset diversity: Increasing the number of shoplifting cases to reduce the class imbalance between shoplifting and 
non-shoplifting cases and improve the model's Overall generalization for detection. 

Integrating architectures: Exploring more models, to solve the problem faced in detection models, can be combining 
ConvLSTM with object detection techniques for enhanced performance and giving good result. 

Optimizing real-time deployment: Refine computational efficiency like accuracy and recalls for real surveillance applications 
which can be use in the market.  

7. Conclusion 
 

This research presents a ConvLSTM-based framework, optimized with the Adam optimizer, for effective shoplifting 
detection in retail environments. A major strength of this work lies in the model’s ability to achieve high accuracy (92%), 
outperforming conventional techniques in identifying suspicious behaviors. By combining spatial and temporal analysis, the 
system can capture even subtle patterns of theft that might otherwise go unnoticed. The integration of data augmentation, 
oversampling, and dropout layers enhances robustness, reducing errors and ensuring consistent performance across varied 
conditions such as lighting changes and camera angles. The accurate results obtained in experiments highlight the practical 
reliability of this framework, making it suitable for real-time retail surveillance. Overall, the study demonstrates how intelligent 
deep learning approaches can significantly improve security systems, minimize financial losses, and build safer retail spaces. 
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