A note on density of cyclic subgroups of a finite group

 ¹Namdev H.More, ¹Anurudra Y.Shete, ¹Daimi Syeda Mariya Begum
¹Department of Humanities and Basic Science
¹Vasantdada Patil Pratishthan's College of Engineering & Visual Arts Sion, Mumbai (M.S.), India.

Abstract: Let *G* be a finite group and *A* be the class of all finite abelian groups. In this paper we show that the image of the function $\alpha : A \rightarrow [0, \frac{3}{4}]$, given by $\alpha(G) = \frac{|C(G)|}{|G|}$ where C(G) denotes the set of cyclic subgroups of *G* and $G \in A$.

Keywords: Groups, cyclic groups, finite groups, p-groups

1. Introduction

Let *G* be a finite group and *C*(*G*) denotes the set of cyclic subgroups of *G*. The quantity $\alpha(G) = \frac{|C(G)|}{|G|}$ was introduced and studied in [2] by M. Garonzi and I. Lima. We recall the following results from [2].

A. If $(G_i)_{i=\overline{1,k}}$ is a family of finite groups having co prime orders, then

$$\alpha(X_{i=1}^k G_i) = \prod_{i=1}^k \alpha(G_i).$$

- B. The value $\frac{3}{4}$ is the largest non-trivial accumulation point of the set $\{\alpha(G)|G = finite \ group\}.$
- C. It is clear that $0 < \alpha(G) \le 1$.

We also recall the following Lemma by Marius Tărnăuceanu and Mihai-Silviu Lazorec [1].

Lemma 1.1: Let *n* be a positive integer, *p* be an odd prime number and *G* be a finite *p*-group of order p^n . Then $\alpha(G) \le \alpha(Z_p^n) = \frac{1 + \frac{p^n - 1}{p - 1}}{p^n}$.

Let *A* be the class of all finite groups. It is obvious that $\alpha(G)\in(0,1]$. Therefore, we consider the function $\alpha : A \to \left[0, \frac{3}{4}\right]$, given by $\alpha(G) = \frac{|C(G)|}{|G|}$ where C(G) denotes the set of cyclic subgroups of *G* and $G \in A$.

The main objective of this short note is to prove the following theorem.

Theorem 1.3. The set $\{\alpha(G)|G = finite \ group\}$ is dense in $\left[0, \frac{3}{4}\right]$. In other words, we prove that the image of α is dense in $\left[0, \frac{3}{4}\right]$.

Firstly, we recall the following results by [1] and [2] respectively.

A.
$$\alpha(Z_p^n) = \frac{1 + \frac{p^n - 1}{p^n}}{p^n}$$
 where p is a prime and $n \ge 1$ is an integer

- B. If G_1 and G_2 are two finite groups such that $(|G_1|, |G_2|) = 1$, then $\alpha(G_1 \times G_2) = \alpha(G_1) \cdot \alpha(G_2)$.
- 2. Main Result

In this section, we prove the validity of the theorem 1.3 . First of all, we recall the following preliminary results by [11].

Lemma2.1. Let $(x_n)_{n\geq 1}$ be a sequence of positive real numbers such that $\lim_{n\to\infty} x_n = 0$ and $\sum_{n=1}^{\infty} x_n$ is (convergent) divergent. Then the set containing the sums of all finite subsequences of $(x_n)_{n\geq 1}$ is dense in $[0,\infty)$. (A proof is given in [9], see Lemma4.1). Lemma2.2. Let $(a_n)_{n\geq 1}$ and Let $(b_n)_{n\geq 1}$ be two sequences of positive real numbers such that $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \beta \in [0,\infty)$.

If $\beta \in (0, \infty)$, then the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ have the same nature.

Proof of the theorem 1.3: Consider a sequence $(a_n)_{n\geq 1} \subset I_m \alpha$, where $a_n = \alpha (X_{i\in I}^k Z_{p_i}^n)$, I is finite subset of N^* and p_i is the i^{th} prime number. Then

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \alpha \left(X_{i \epsilon l}^k Z_{p_i}^n \right)$$
$$= \lim_{n \to \infty} \prod_{i \epsilon l} \frac{p_i^n + p_i - 2}{p_i^n (p_i - 1)}$$
$$= \lim_{n \to \infty} \prod_{i \epsilon l} \frac{1}{p_i - 1}.$$

Hence, we have

$$\begin{split} \left\{ \prod_{i \in I} \frac{1}{p_i - 1} \left| ICN^*, |I| < \infty, p_i = i^{th} prime \ number \right\} C \overline{Im\alpha} \left(X_{i \epsilon}^k \ Z_{p_i}^n \right) = \overline{Im(G)} C \\ &= \left[0, \frac{3}{4} \right]. \end{split}$$

Now, consequently, if we show that the first $\left[0, \frac{3}{4}\right]$, then theorem 1.3 holds. Hence, we prove that

$$\left\{ \prod_{i \in I} \frac{1}{p_i - 1} \left| ICN^*, |I| < \infty, p_i = i^{th} prime number \right\} = \left[0, \frac{3}{4} \right]$$

Consider the sequence $(x_i)_{i\geq 1} C(0,\infty)$ where $x_i = ln\left(\frac{1}{p_i-1}\right)$.

We have

$$\lim_{i \to \infty} \frac{x_i}{\frac{1}{p_i}} = \lim_{i \to \infty} \frac{\ln\left(\frac{1}{p_i - 1}\right)}{\frac{1}{p_i}} = 1.$$

Therefore, since the series $\sum_{i=1}^{\infty} \frac{1}{p_i}$ is convergent by Lemma 2.2 above, we deduce that the series $\sum_{i=1}^{\infty} x_i$ is also convergent. It is obvious that $\lim_{i \to \infty} x_i = 0$, so all the hypotheses of the Lemma 2.1 are satisfied. Therefore, we have

$$\overline{\{\sum_{i\in I}^{\infty} x_i | ICN^*, |I| < \infty\}} = [0, \infty) \Leftrightarrow \left\{\sum_{i\in I}^{\infty} ln\left(\frac{1}{p_i - 1}\right) | ICN^*, |I| < \infty\right\} = [0, \infty)$$

$$\Leftrightarrow \left\{ \prod_{i \in I} \frac{1}{p_i - 1} \left| I C N^*, |I| < \infty, p_i = i^{th} prime \ number \right\} = [0, \infty).$$

Further, we denote the interval $(0, \infty)$ by *Y*. Consider the topological spaces (\mathbb{R}, T_R) and (Y, T_Y) , where T_R is usual topology of \mathbb{R} and T_Y is the subspace topology on *Y*. Note that for a subspace *S* of *R*, we have $\overline{S_{T_Y}} = \overline{S} \cap Y$. Since the function

 $exp: (\mathbb{R}, T_R) \to (Y, T_Y)$, given by $exp(x) = e^x$, for every real number x, is continuous and $\left[\frac{3}{4}, \infty\right)$ is a closed set of R, we have

$$\overline{\left\{\prod_{\iota\in I}\frac{1}{p_{\iota}-1}\left|ICN^{*},|I|<\infty,p_{\iota}=\iota^{th}prime\ number\right\}}=\left[\frac{3}{4},\infty\right).$$

Note that

$$\begin{split} \left\{ \prod_{\iota \in I} \frac{1}{p_{\iota} - 1} \left| ICN^{*}, |I| < \infty, p_{\iota} = \iota^{th} prime \ number \right\} \\ &= \overline{\left\{ \prod_{\iota \in I} \frac{1}{p_{\iota} - 1} \left| ICN^{*}, |I| < \infty, p_{\iota} = \iota^{th} prime \ number \right\}} \cap Y \\ &= \left[\frac{3}{4}, \infty \right) \cap Y \\ &= \overline{\left[\frac{3}{4}, \infty \right)} \cap Y \\ &= \overline{\left[\frac{3}{4}, \infty \right)}_{T_{V}}. \end{split}$$

Hence, if we consider the continuous function $f: Y \to R$, given by $f(y) = \frac{1}{y}$, for every $y \in Y$, we deduce that

$$\overline{\left\{\prod_{\iota\in I}\frac{1}{p_{\iota}-1}\left|ICN^{*},|I|<\infty,p_{\iota}=\iota^{th}prime\ number\right\}}=\left[0,\frac{3}{4}\right].$$

Consequently, our proof is complete.

Further, it is a open problem to study other properties of the function α especially injectivity and surjectivity of α .

REFERENCES:

- 1. Marius Tǎrnǎuceanu and Mihai-Silviu Lazoree, A note on the number of cyclic subgroups of a finite group, arxIv: 1805.00301vi, May 2018.
- 2. Lazoorec M.S. A connection between the number of subgroups and the order of finite group, arxiv:1901.06425.
- 3. Nitecki z, Contineous and subsum sets of null sequences, Am. Math.Mon.122, 862-870(2015).