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Abstract 
Resolvable and nearly resolvable designs are important combinatorial structures that play a 
vital role in experimental designs and statistical analysis. This review paper presents a 
comprehensive study of the theoretical foundations, construction techniques and major 
developments in resolvable and nearly resolvable block designs. The main attention is given to 
their connections with variance balanced and efficiency balanced designs, with an evaluation 
of methodologies used for their construction. By reviewing and structuring the existing 
literature, the aim of this paper is to provide a clear understanding about resolvable and nearly 
resolvable block designs. This review also highlights the potential directions for future 
research. 
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1. Introduction 
Design of experiments is a statistical method used to plan, conduct, and analyse experiments in 
order to understand the relationships between variables and how they affect a response. It is a 
crucial tool for researchers in a variety of fields, including engineering, manufacturing, biology, 
and psychology. 

There are three basic principles of a design which were developed by Sir Ronald A. Fisher; 
randomization (to remove bias), replication (to estimate experimental error), blocking (to 
reduce variability).  

Sir Ronald A. Fisher (1890- 1962), the father of statistics has the credit of developing the 
concept of statistical control and the use of randomization in experiments. His work laid the 
foundation for modern design of experiment techniques, such as analysis of variance (ANOVA) 
and the development of statistical models. 

Combinatorial design theory, a very wide area of discrete mathematics, deals with the 
arrangement of elements into specified patterns. It provides mathematical structures, such 
as balanced incomplete block designs (BIBD) and la�n squares, to ensure that treatments are 
compared fairly, minimize the number of required experiments, and enhance the accuracy of 
statistical analyses in fields like agriculture, biology, and clinical trials. Among this wide range 
of combinatorial structures, block designs have a special place due to their theoretical and 
practical uses. A block design provides a systematic way of organizing treatments in 
experimental units. The commonly used block designs are randomized (complete) block 
designs, balanced incomplete block designs (BIBD), resolvable designs, partially balanced 
incomplete block designs (PBIBD) etc. Among these, balanced incomplete block designs 
(BIBDs) are most widely studied. A block design is said to be resolvable, if its blocks can be 
divided into replicates such that each treatment appears once in every replicate. To achieve 
orthogonality between treatments and nuisance factors and making experiments more reliable, 
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resolvability plays important role. It is useful in sequential experiments, multi-site studies and 
experiments in which there are multiple individuals. The most common application of 
resolvable designs is in agricultural field trials. When resolvable designs are not feasible then 
a practical alternative emerges which is known as nearly resolvable designs. The perception of 
resolvability in combinatorial designs was introduced by Bose in 1942, however it was 
extended in the context of experimental design with the development of nearly resolvable 
designs by Shrikhande and Raghavarao in 1960s and more recently by Yadav, Dash and Singh 
[69]. 

2. History 
Design of experiments was developed by Sir Ronald A. Fisher in the 1920s and 1930s at 
Rothamsted Experimental Station, an agricultural research station. In the period 1936-1940, 
while working on latin square designs, Yates introduced the idea of resolvability. The concept 
of resolvability in block designs can be seen in Kirkman’s school girl problem given in 1850s. 
Later, in the year 1942 the concept of resolvable designs was introduced by R.C. Bose. 
Resolvable designs are highly useful as they facilitate effective inter-block and intra-block data 
analysis, further improving efficiency and precision of the experiment. Whereas, in Nearly 
Resolvable Designs which are a generalization of resolvability, blocks can be divided into sets, 
but some treatments do not appear in every set. The idea of nearly resolvable designs for 
incomplete block designs was given by Shrikhande and Raghavarao in 1960s. 

3. Preliminaries 
Balanced Incomplete Block Designs (BIBD): An arrangement of ν treatments in b blocks of 
k plots each (k<ν) is known as BIBD, if (i) Each treatment occurs once and only once in r 
blocks and (ii) Each pair of treatments occurs together in λ blocks. 

Necessary conditions for the existence of the B.I.B.D. are: 
(i) νr = bk , (ii) λ (ν – 1) =r (k-1), (iii) b ≥ ν (Fisher’s Inequality)  

Symmetric Balanced Incomplete Block Designs: A BIBD is said to be symmetric if b = v and 
r = k. In this case incidence matrix N is a square matrix i.e. N׳ = N. In case of symmetric 
balanced incomplete block designs any two blocks have λ treatments in common. 

Variance Balanced Designs: A block design is said to be variance balanced if it allows the 
estimation of all normalized treatment contrasts with the same variance. 
Let us consider the matrix C = R - NK�� N� 
where R =  diag (��, ��,…….�� ), K = diag ( k�, k�,……k�) 
Kageyama [41] established that N is variance balanced block design if and only if   

                              C = η (I� - 
�

�
 1� 1�

� )   

where η is the unique non zero eigen value of C with multiplicity v – 1; I� is the unit matrix of 
order v; I� is v x 1 vector all of whose elements are one. 

Efficiency Balanced Designs: A block design is said to be efficiency balanced if every contrast 
of treatment effects is estimated through the design with the same efficiency factor. 

Let us consider the matrix M₀ given by Calinski [21]  

                               M� = R�� NK�� N� - 
�

�
 1ᵥ r�                                                (1.1) 

                               M�S = µS 
where T= [ T₁ T₂……….Tᵥ]’ is the vector of treatment totals, Ti is the total yield for the ��� 
treatment, µ is the unique non zero eigen value of �� with multiplicity (ν – 1) and �� is given 
as (1.1). 
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Calinski [21] showed that for such designs every treatment contrast is estimated with the same 
efficiency (1- µ) and N is an efficiency balanced design if and only if  

                              M� = µ ( I� - 
�

�
 1� r� )                                                          (1.2) 

Kageyama proved that for the efficiency balanced block design N, equation (1.2) is fulfilled if 

and only if  C = (1 - µ) (R- 
�

�
 rr’) 

Partially Balanced Incomplete Block Designs: Given an association scheme with m classes 
(m ≥ 2), a Partially Balanced Incomplete Block (PBIB) design can be constructed based on this 
scheme if the ν treatments can be arranged into b blocks such that: 

1. Each block contains k (< ν) distinct treatments. 
2. Each treatment occurs in exactly r different blocks. 
3. If two treatments α and β are mutually i-th associates in the association scheme, then α 
and β occur together in exactly λᵢ blocks. The integer λᵢ does not depends on the pair (α, β) 
being i-th associates, where i = 1, 2, ……., m. Moreover, not all λᵢ’s are necessarily equal. 

Group Divisible Designs: A two-associate PBIB design is called a Group Divisible (GD) 
design if there are v = mn treatments, which can be divided into m groups of n treatments each, 
such that: 

• Any two treatments within the same group are first associates. 
• Any two treatments belonging to different groups are second associates. 

Here m, n ≥ 2, n₁ = (n - 1) and n₂ = n (m - 1). where n₁ is the number of first associates and n₂ 
is the number of second associates for each treatment. These group divisible designs are further 
classified into Singular, Semi Singular and Regular designs. 

Resolvable Balanced Incomplete Block Designs: A balanced incomplete block design with �, 
b, r, k and λ is said to be resolvable if the b blocks can be divided into r groups or sets of b/r 
blocks each, b/r being an integer, such that b/r blocks forming any of these sets give a complete 
replication of all the v treatments. The parametric relations  b ≥ v + r − 1 serve as a necessary 
condition for the existence of a resolvable BIBD. 

Affine Resolvable Designs: A resolvable design is said to be affine resolvable if b = v + r −
1 and any two blocks from different sets have k2/v treatments common where k2/v is an integer. 

α-Resolvable Designs: An incomplete block design with the parameter �, b, r, k is said to be 
α-resolvable if the b blocks of size k each can be grouped into t sets (called α-resolution sets) 
of β blocks each, such that in each α-resolution set every treatment (or point) is replicated α 
times and we have,   v α = k β,   b = t β,    r = t α  

Affine α-Resolvable Designs: An α-resolvable block design is said to be affine α-resolvable if 
every two distinct blocks from the same α-resolution set intersect in the same number, say, q1, 
of treatments, whereas every two blocks belonging to different α-resolution sets intersect in the 
same number, say, q2, of treatments. Necessary and sufficient condition for an α- resolvable 
BIB design to be affine α-resolvable with the block intersection number q1 and q2 is, q� =
k(α − 1)/(β − 1) and q� = kα/β = k�/v. 
 

Nearly Resolvable Designs: Abel [66] introduced the concept of nearly resolvable balanced 
incomplete block designs. A nearly resolvable design, denoted by NRB, is a block design, in 
which the blocks can be partitioned into partial resolution classes missing single treatment and 
every treatment of the design is absent from exactly one class; considering all the blocks 
together it forms a BIBD design. 

Nearly µ-resolvable Designs: A design is (nearly) µ-resolvable if it has (nearly) a resolution 
such that any (v-1) treatments occur µ- times in each of the resolution sets. When µ=1, it leads 
to a nearly resolvable design in the sense of Abel and Furino. 

Degres Journal ISSN NO:0376-8163

Volume 10 Issue 10 2025 PAGE NO: 148



Optimality: Optimal designs are a class of experimental designs that are optimal with respect 
to some statistical criterion. 
(i) A-optimality (trace): A-optimality minimizes the trace of the inverse of the information 
matrix. This criterion results in minimizing the average variance of the estimates the regression 
coefficients. 
(ii) D-optimality (determinant): A popular criterion, D-optimality, seeks to minimize       
│(XꞌX) -1│ or equivalently maximize the determinant of the information matrix XꞌX of the 
design. This criterion results in maximizing the differential Shannon information content of the 
parameter estimates. 
(iii) E-optimality (eigen value): E-optimality maximizes the minimum eigen value of the 
information matrix. 
 
4. Related Work 
In 1850, Kirkman introduced the well known ‘school girl problem’. The challenge was to 
arrange three girls in five rows each, across seven days. The arrangement had to be such that 
every possible pair of girls walks together in the same row on exactly one day. More generally, 
the problem was to arrange (6n + 3) girls into (2n +1) rows of three, over (3n + 1) days, in such 
a way that each pair of girls appears in the same row exactly once. In modern terminology, such 
arrangements correspond to the construction of resolvable balanced incomplete block designs 
with block size 3.  

However, the term “resolvable design” was first introduced by Bose in 1942. He established 
the conditions needed for a Balanced Incomplete Block Designs (BIBD) to be resolvable or 
affine resolvable. Yate’s [71] work was later expanded by Harshbarger [34] who extended it to 
rectangular lattices. Bose and Nair [19] applied it to two-replicate designs, also created a special 
type of resolvable BIBD with two replications, using sample squares, rectangular lattices, or 
their extensions. These kinds of BIBDs gained attention in both combinatorics and statistics. 
Later, Shrikhande and Raghavarao [64] expanded Bose’s ideas to define α-resolvability and 
affine α-resolvability. They identified the key conditions for a design to meet these criteria and 
applied the concepts to certain BIB designs and PBIB designs. Many researchers have 
contributed to this field by studying the construction and properties of affine α-resolvable BIB 
designs and PBIB designs. Some of the key contributors include Bailey [12], Banerjee and 
Kageyama [14], Bose [18], Calinski and Kageyama [22], Clatworthy and Shrikhande [23], 
Monod and Morgan [39], Kageyama and Mohan [51], Shrikhande and Raghavarao [63]. David 
[27] worked on cyclic designs. Enormously significant work has been done by statisticians in 
the area of resolvable designs. Chaudhuri and Wilson [59] provided necessary and sufficient 
conditions for constructing resolvable balanced incomplete block designs when the block size 
is 3. 

The concept of µ- resolvable balanced incomplete block designs was introduced by S. 
Kageyama in 1973 with parameters ν, b = m t, r = µt, k and λ, Kageyama established the 
inequality b ≥ ν+t-1. The main objective of this note is to improve this bound to b ≥ max (ν+t-

1, 
�����

µ²
). Furthermore, this inequality is redefined for µ-resolvable BIBD that are not affine 

µ-resolvable. 

In 1973, Clatworthy [25] provided information about Group Divisible Designs and other 
Partially Balanced Incomplete Block (PBIB) designs with two-associate classes. Cerenka [24] 
provided different methods of constructing PBIBDs. Kageyama [51] extended the concept of 
μ-resolvability to (μ₁, μ₂, …, μt)-resolvability. Agrawal and Boob [8] developed a new way to 
construct Affine Resolvable Balanced Incomplete Block Designs using an incidence matrix. 
Several researchers introduced new methods to construct Resolvable Incomplete Block 
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Designs. Patterson and Williams [56], Jarrett and Hall [37] and Agrawal and Boob [8] proposed 
constructions for any number of treatments and block sizes divisible by 3. These are helpful in 
situations where traditional methods don’t work, especially when a complete set of incomplete 
block designs is difficult to build. Two main methods are often used: (i) Patterson and William’s 
method, which is direct and simple. (ii) Jarrett and Hall’s method, which needs an initial block 
set but becomes easier once that is ready.  

Shah [61] also provided conditions under which an α-resolvable incomplete block design is 
affine α-resolvable. Mukerjee and Kageyama [54] developed the idea of resolvable and affine 
resolvable variance-balanced designs, explaining the concept of affine (μ₁, μ₂,…, µ�)-
resolvability. They also examined the connection between affine resolvability and variance-
balance, the relationship defined by the equation b = v + t - 1. 

    A new method to construct self-complementary semi-regular group divisible (SRGD) designs 
using self-complementary balanced incomplete block designs was proposed by Kageyama et 
al. in [43]. Some existent results of resolvable and α-resolvable group divisible designs are 
given in literature like Ahmed and Alan [9], Gennian [30, 31]. 

Banerjee and Kageyama [14] presented the existence of α-resolvable nested incomplete block 
designs and provided a method to construct such designs from affine α′-resolvable BIB (PBIB) 
designs for specific values of α and α′.  

After the introduction of nearly resolvable designs in design of experiments in 1994, Steven 
Furino [29] provided the necessary conditions for the existence of nearly resolvable designs. 
He discussed the required conditions for the existence of  NRB (v, k) when v = 1 (mod k) and 
v = k – 1. He also proved that these conditions are sufficient for k = 2,3,4 and almost sufficient 
for k = 5, 6. These new methods helped in creating previously unknown designs such as NRB 
(v, 5) and NRB (v, 6).  

Bailey, Monod, and Morgan [12] presented strong optimality criterion for affine resolvable 
designs originally introduced by Bose. Ionin, Mohan, and Shrikhande [36] extended the idea 
of resolvability and affine resolvability to pairwise balanced designs by analysing the vector 
space of linear polynomials in variables corresponding the blocks. They also established the 
necessary and sufficient conditions for such designs. 

Later Tran Van Trung [68] introduced a classical method using inverse planes of even order and 
developed a recursive construction technique for BIBDs using resolvable BIBDs. He also 
showed that the approach of Shrikhande and Raghavarao [63] can be extended using near 
resolvable designs. 

Noga Alon and Raphael Yuster [11] studied H-decompositions of complete graphs (Kn) and 
showed that each has a nearly resolvable version, where H is a fixed graph. In an H-
decomposition, the edges of Kn are coloured so that each colour class forms a copy of H (called 
a member). The resolution number χ(L) is the smallest number of subsets required to partition 
the decomposition such that no two members in a subset share vertices. They proved that 
whenever Kn has an H-decomposition, it also has a decomposition L such that χ²(L) ≥ average 
degree of H. 

Sunanda Bagchi [13] published a paper in which she proposed a general method of constructing 
group divisible designs and rectangular designs by using resolvable and almost resolvable 
balanced incomplete block designs. Group divisible designs with λ₂ = λ₁ + 1, Rectangular 
Designs consisting of two rows and satisfying λ₃ = λ₂ = λ₁ + 1 were derived, many of the group 
divisible designs are shown to be optimal among binary designs concerning all type 1 criteria. 
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Harri H. and Petteri K. [33] established a connection between nearly resolvable 2-(v, k, λ) 
designs and a certain class of codes. They specifically studied the nearly resolvable 2-(13, 4, 3) 
designs and classified them using an orderly algorithm. The thirteen-player whist tournaments 
were also analyzed based on these designs. 

Rudra et al. [60] proposed construction methods for 3-resolvable nested 3-designs and nested 
3-wise balanced designs based on affine resolvable 3-designs. Malcolm Greig and Haanpaa 
[63] established that a near resolvable 2-(2k +1, k, k – 1) design exists if and only if a conference 
matrix of order 2k + 2 does. A known result on conference matrices allows us to conclude that 
a near resolvable 2-(2k + 1, k, k − 1) design with even k can only exist if 2k + 1 is the sum of 
two squares. In particular, neither a near resolvable 2- (21, 10, 9) design nor a near resolvable 
2-(33, 16, 15) design exists. For k ≤ 14, Rudra et al. enumerated the near resolvable 2- (2k + 1, 
k, k − 1) designs and the corresponding conference matrices. 

Morgan J.P. and Brian H. Reck [39] worked on resolvable designs with large blocks. They 
illustrated the sufficient conditions to achieve optimality under some strong criteria and offered 
a detailed study of E-optimality with a characterization of E-optimal class. This study also 
explores resolvable designs with two blocks per replicate in terms of their optimality. The 
concept of α-resolvability in block designs was established by Kadowaki and Kageyama [41]. 
The concept had previously been examined in different studies in 1942 for α = 1 and precisely 
for α ≥ 2 in 1963. In an α- resolvable balanced incomplete block design, three different lower 
limits for the number of blocks b ≥ v – 1 + t, b ≥ v – 1 + 2t, b ≥ 2(v -1) + t will be discussed 
under certain conditions. Calinski and Kageyama [23] contributed by analysing experimental 
designs involving affine resolvability. Sinha [67] developed a method to construct optimal 
group divisible designs from affine resolvable BIB designs. 

From 1974–2009 there has been a lot of progress in experimental designs, especially in the area 
of resolvable designs, with major contributions from Kageyama [42-52]. Kageyama [42] 
highlighted that affine α-resolvable group divisible designs of regular type does not exist when 
α ≥ 1, meaning this concept doesn’t apply to regular group divisible designs. Kageyama [47] 
also showed that affine α-resolvable triangular designs do not exist for α = 1, 2, and only partial 
existence is possible when α ≥ 3. He later proved that such designs do not exist for α between 
1 and 10. Dean Cronvik [26] presented methods for constructing block designs using resolvable 
designs. 

Luis B. Morales [53] formulated the problem of constructing 1-rotational near resolvable 
difference families as a combinatorial optimization problem where a global optimum 
corresponds to a desired difference family.  

Kadowaki and Kageyama [42] explored ways to build affine α-resolvable PBIB designs 
(including SGD, SRGD, and Latin square designs) using tools like, Difference Schemes, 
Hadamard Matrices, BIB designs with v ≤ 100 and r, k ≤ 20. Their study revealed that number 
theory can help in understanding the combinatorial structure of such designs. Later in 2012, 
Kadowaki and Kageyama [43] proposed new construction methods for affine resolvable SRGD 
designs. A new method for building SRGD and resolvable SRGD designs was developed using 
self-complementary balanced incomplete block designs, as proposed by Singh [76]. He also 
provided a series of resolvable SRGD designs. Shangdi and Huihui [71] proposed methods for 
building key distribution patterns based on resolvable designs. They explored the connection 
between resolvable designs and key distribution patterns, and how key distribution patterns can 
be converted into resolvable designs. 

Agrawal et al. [3] developed 3-resolvable regular group divisible designs using incidence 
matrices derived from known affine resolvable balanced incomplete block designs (BIBDs), 
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and also proposed BIBDs with unequal block sizes. In a subsequent study in the same year, 
they investigated the optimality of variance and efficiency-balanced affine resolvable designs 
and resolvable designs with unequal block sizes, establishing that both are universally optimal. 
They further introduced a construction method for variance and efficiency-balanced (α₁, α₂, 
……., αₜ) resolvable BIBDs with unequal block sizes based on 2ⁿ -symmetrical factorial 
designs, focusing on binary block designs and covering cases where r ≤ 30. 

Later Agrawal et al. [5] proposed construction methods for affine resolvable BIBD and affine 
resolvable rectangular-type PBIBD with unequal block sizes. These constructions are based on 
the incidence matrices of known resolvable balanced incomplete block designs. Earlier, 
Kageyama demonstrated that such designs are variance balanced, while Agrawal et al. further 
established that they are efficiency balanced as well. 

Julian R. and Abel R. [40] outlined ν ≡ 1(mod k) as the necessary condition for existence of (v, 
k, k-1) near resolvable BIBD. A Few more results are established for the existence of (9, 8) 
frames of type 9t and showed that these exist for all t ≥ 9. 

Bassalygo L.A. and Zinoview V.A. [16] discussed the relationship between balanced 
incomplete block designs (BIBD), near resolvable balanced incomplete block designs and q-
array constant- weight codes. They proved that any balanced incomplete block design B (v, k, 
1) generates a near resolvable balanced incomplete block design. Further, they extended this 
work by proposing that any resolvable BIBD with λ = 1 results in an optimal equidistant code 
C₁ with parameters related to design. They also identified additional configurations, such as an 
optimal equidistant constant composition code C₂ and connected these to near resolvable 
BIBDs with adjusted parameters. 

Durakovic B. [17] explored the historical aspects of Design of Experiments and provided its 
area of application, revealing that in past 20 years application of Design of Experiments has 
grown rapidly in manufacturing as well as non-manufacturing domain. 

Agrawal et al. [5,7] proposed a method of constructing variance and efficiency balanced (α₁, α₂, 
…………αn-1) resolvable balanced incomplete block design with unequal block sizes using 2ⁿ -
symmetrical factorial design. A detailed investigation confirmed universal optimality of the design.  

Banerjee et al. [15] proposed methods of constructions of nearly µ-resolvable designs. They 
dealt with general construction methods of nearly µ-resolvable balanced incomplete block 
designs with illustration using one resolvable balanced incomplete block design and some 
known group divisible designs. 

Agrawal et al. [1] suggested a construction technique of affine (µ₁, µ₂, …… µ�) resolvable 
balanced incomplete block designs with illustrations. The proposed method is based on the 
incidence matrix of known affine resolvable balanced incomplete block designs.  

Gopinath et al. [32] proposed two new methods of construction to obtain resolvable incomplete 
block designs for symmetrical and asymmetrical factorial experiments. The designs so 
generated have orthogonal factorial structure and the main effects are estimated with full 
efficiency and balance. They presented a catalogue of designs obtainable by this method with 
number of levels of any factor ≤ 12, along with their efficiency factors. 

Shyam S. [65] extended the idea of near resolvability for balanced incomplete block design to 
partially balanced designs and some such designs are also constructed. Some series of group 
divisible designs, near resolvable designs and cyclic designs are obtained from α-resolvable 
group divisible designs, near resolvable triangular and near resolvable cyclic designs, proving 
these designs are important classes of partially balanced incomplete block designs.  

Jha A. and Varghese C. [38] proposed a new series of four- associate partially balanced 
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incomplete block designs in two replications, the block sizes being different. Yadav et al. [69] 
developed a construction method of α-resolvable BIB designs for even number of treatments 
and also developed a general construction method of nearly α-resolvable BIB designs. The 
methods designed by them offer a simplified approach for constructing these designs, 
addressing some of the complexities and limitations associated with existing methodologies in 
the field. 

5. Conclusion 
Resolvable and nearly resolvable designs hold significant importance in designing of 
combinatorial and experimental theory. This review paper explores the core concept, 
constructions and wide applications of resolvable and nearly resolvable designs. Recent 
progress has refined their designs and enhanced applications, still there remains substantial 
scope for innovation, particularly in developing new construction techniques, extending 
existing results to broader classes of designs, and exploring deeper connections with related 
mathematical structures. The development of these designs in diverse domains such as 
experimental design, network design, and error correcting codes underscore their theoretical 
and practical importance. 
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