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ABSTRACT 

This study addresses the efficacy of social isolation during the lockdown period of COVID-19 

epidemiology using the Adomian decomposition approach under the Elzaki transformation. This 

pandemic has been hazardous all across the world from late 2019 to 2021, and some instances are still 

ongoing. It also highlighted how social separation is correlated to a decrease in COVID-19 instances 

among Indian people. Furthermore, figures have also been provided to manifest the results of social 

isolation in the reduction of COVID-19 instances among individuals. 
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1. INTRODUCTION 

Integral transformations are critical in studying COVID-19 dynamics. The Laplace transform, which 

is used to solve differential equations driving disease propagation, helps predict infection rates and 

evaluate intervention success. Furthermore, the Fourier transform is commonly used in medical 

imaging techniques such as CT scans and MRI to diagnose and monitor COVID-19 patients [1]. 

Integral transformations reveal latent patterns in epidemiological data, leading to targeted treatments 

and resource allocation techniques. Overall, integral transforms provide essential insights into 

transmission patterns and enable successful pandemic-related public health interventions. 

COVID-19, which is caused by SARS-CoV-2, has had a global health and economic effect. 

Extensive research, immunization programs, and social interventions are among the efforts made. 

Emerging mutations and vaccination dissemination are among the challenges. Continuous 

monitoring and worldwide collaboration are critical [2]-[4]. 

The Elzaki transformation provides a unique technique for understanding COVID-19 dynamics, 

assisting in the resolution of differential equations regulating disease transmission. Researchers may 

use this transformation to provide analytical solutions that help with forecasting and decision-

making in public health initiatives. The Elzaki transformation is a viable method for recognizing 

and minimizing the effects of COVID-19. 

The Elzaki transformation and Adomian composition approach are useful mathematical tools for 

examining the dynamics of the COVID-19 epidemic. These approaches allow for the solution of 

complicated differential equations regulating disease transmission and intervention tactics, offering 

insights into infection rates, recovery rates, and other epidemiological characteristics [5]. 

Researchers may use these mathematical tools to provide analytical answers that help with 

forecasting, decision-making, and the creation of effective mitigation measures in public health 

initiatives. 
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2. MATERIALS AND METHODS 

2.1. Elzaki Transform 

The Elzaki transform is represented by the operator  �̇(. ) and specified by integral equations [6] 

�̇[ʄ(ȶ)] = Ƭ(ʋ) = ʋ � ʄ(ȶ)��
ȶ
ʋ�ȶ

�

�

, ȶ ≥ 0, �� ≤ ν ≤ �� 

The inverse of the Elzaki transform is given by  

�̇��[ℱ(ʋ)](ȶ) =
1

2πj
� ℱ �

1

ʋ
� �ȶʋʋdʋ

����

����

  

There is a list of some functions with their Elzaki transform given below [6],[7],[8],[9]: 

S. No. Functions ʄ(ȶ) Elzaki transform 

1.  1 ʋ� 

2.  ȶ ʋ� 

3.  e�ȶ ʋ�

1 − �ʋ
 

4.  ȶ�, n ≥ 0 n! ʋ��� 

5.  ��� �ȶ �ʋ�

1 + �ʋ�
 

6.  ��� �ȶ ʋ�

1 + ��ʋ�
 

7.  ��� h�ȶ �ʋ�

1 − ��ʋ�
 

8.  ��� h�ȶ �ʋ�

1 − ��ʋ�
 

9.  e�ȶ ��� bȶ bʋ�

(1 − �ʋ)� + b�ʋ�
 

10.  e�ȶ ��� bȶ (1 − �ʋ)ʋ�

(1 − �ʋ)� + b�ʋ�
 

11.  ȶ ��� �ȶ 2�ʋ�

1 + ��ʋ�
 

12.  ȶ ��� �ȶ ʋ�

1 + ��ʋ�
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13.  ȶ e�ȶ ʋ�

1 − �ʋ
 

14.  e�ȶ ʋ�

1 − �ʋ
 

15.  Convolution theorem�Ė(ʄ ∗ ℊ)�]  1

ʋ
Ė(ʄ)Ė(ℊ) 

 

2.2. The initial method for formulating the input equation  

A few recent independent studies on the coronavirus disease (COVID-19) by Chen [10] and Zhang 

[11] successfully applied mathematical models. The mathematical equation by Khan and colleagues 

has been utilized and modified in this context [12], presented as: 

���(ȶ) = � − Λ� −
ձ�(� + Ƃ�)

�
− Ϋ�� 

��ℋ(ȶ) =
ձ�(� + Ƃ�)

�
+ Ϋ�� − (1 − Ω)�ℋ − Ω�ℋ − Λℋ 

���(ȶ) = (1 − Ω)�ℋ − (� + Λ)� 

���(ȶ) = Ω�ℋ − (� + Λ)� 

���(ȶ) = �� + �� − �� 

���(ȶ) = ӄ� + ɣ� − �� (1) 

under the initial conditions: 

�(0) = ��; ℋ(0) = ℋ�; �(0) = ��; �(0) = ��; �(0) = ��; �(0) = �� 

In this equation, � represents the entire population, which is divided into five sub-classes: infection-

prone individuals �(ȶ), vulnerable individuals ℋ(ȶ), diseased individuals �(ȶ), progressively infected 

individuals �(ȶ), emancipated individuals �(ȶ) and reservoirs �(ȶ) (sources of virus-like seafood). 

Table 1 defines the necessary parameters for this equation. 

The description of parameters relevant to the equation, its notation, and value [13]. 

Table 1 

Description of parameter Notation Value References 

Birth rate � 6,931,614.27 Estimated 

Contact rate ձ 0.25 Estimated [15] 

Natural mortality rate � 0.014 Fitted [14] 

Transmission rate Ƃ 0.5944 Fitted [15] 

Pace of growth φ 0.004787 Fitted [15] 
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Incubation time ϖ 0.05 Fitted [16] 

The proportion of asymptotic infection Ω 0.01243 Fitted 

Disease transmission coefficient Ϋ 0.123 × 10�� Fitted 

Recovery of elimination of the rate of U ϱ 0.09871 Fitted [17] 

Recovery of elimination of the rate of G ς 0.8543 Fitted [17] 

Contribution of the virus to W via U ӄ 0.000398 Fitted [17] 

Contribution of the virus to W via G ɣ 0.001 Fitted 

Removing the rate of virus from W ξ 0.01 Fitted 

 

3. THEORY AND NUMERICAL SCHEMES 

3.1. Adomian Decomposition Method (ADM) 

It was developed by George Adomian, who chaired the Center for Applied Mathematics at the 

University of Georgia during the 1970s to 1990s. 

We employ ADM, a semi-analytic approach, to solve ordinary and partial non-linear differential 

equations.  

When a nonlinear section is decomposed, we get a sequence of Adomian polynomials. Using the 

Adomian polynomial [18] and a recursive relationship, a series-based solution is achieved. 

The technique is computed using 

At first, we are taking the non-linear equation: 

ℬ = � 

where, ℬ is a non-linear operator and � maybe both function and value. 

Then, the equation ��(ȶ) + ��(ȶ) + ℛ�(ȶ) = �(ȶ) is the operator form of the equation. 

Now, taking ��� on each side, 

�����(ȶ) + �����(ȶ) + ���ℛ�(ȶ) = � 

⇒                                    �(ȶ) = �(ȶ) − �����(ȶ) − ���ℛ�(ȶ) 

Considering the unknown function �(ȶ) may be expressed as the summation of an infinite series 

�� + �� + �� + �� + ⋯ and so on. i.e., �(ȶ) = ∑ ��
�
���  

Let �� = �(ȶ) 

Using recursive relationships to acquire more terms of the series. Here ℛ�(ȶ) can be written as:  

ℛ�(ȶ) = ∑ ��
�
���  

To determine the value of ��, we need a grouping parameter ɕ. Therefore, we have 

�� =
�

�!

��

�ɕ� ℛ�(ɕ) and ɕ = 0 
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As a result, ADM yields a convergent series solution [19]-[20]. This solution achieves absolute and 

uniform convergence. 

3.2. Investigation with ADM 

The Adomian Decomposition approach (ADM) is a semi-analytical approach for solving ordinary 

and partial nonlinear differential equations. George Adomian created the approach from 1970s to 

1990s. The Adomian decomposition technique (ADM) [21] can be significantly used for solving 

linear, nonlinear, ordinary, and partial equations. The approach for solving differential equations 

and integral transforms, including Volterra and Fredholm integral transforms, has been updated in 

recent works [22]. We utilized Eq. (1) to simulate, fit data, and estimate values using ADM. We 

used the �̇ operator for the first-order differential equation and expressed equation (1) as 

�̇�(ȶ) = � − Λ� −
ձ�(� + Ƃ�)

�
− Ϋ�� 

�̇ℋ(ȶ) = ձ�(� + Ƃ�) + Ϋ�� − (1 − Ω)�ℋ − Ω�ℋ − Λℋ 

�̇�(ȶ) = (1 − Ω)�ℋ − (� + Λ)� 

�̇�(ȶ) = Ω�ℋ − (� + Λ)� 

�̇�(ȶ) = �� + �� − Λ� 

�̇�(ȶ) = ӄ� + ɣ� − �� (2) 

Applying �̇�� operator on both sides, we get 

�(ȶ) = �� + � − Λ�̇���(ȶ) − �̇�� �
ձ

�
(�� + Ƃ��) + Ϋ��� 

ℋ(ȶ) = ℋ� + �̇�� �
ձ(�� + Ƃ��)

�
+ Ϋ��� − [(1 − Ω)� + Ω� + Λ]�̇��ℋ(ȶ) 

�(ȶ) = �� + (1 − Ω)��̇��ℋ(ȶ) − (� + Λ)�̇���(ȶ) 

�(ȶ) = �� + Ω��̇��ℋ(ȶ) − (� + Λ)�̇���(ȶ) 

�(ȶ) = �� + ��̇���(ȶ) + ��̇���(ȶ) − Λ�̇���(ȶ) 

�(ȶ) = �� + ӄ�̇���(ȶ) + ɣ�̇���(ȶ) − ��̇���(ȶ) (3) 

Using decomposition �(ȶ) = ∑ ��
�
���  

� ��

�

���

= �� + � − Λ�̇�� �� ��

�

���

� − �̇�� �
ձ

�
(�� + Ƃ��) + Ϋ��� (�) 

Now, ��, ��  and �� can be expressed as: 

�� = � ��

�

���

 

�� = � ��

�

���

 

�� = � ��. ��

�

���
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�� = � �� � ��

�

���

�

���

− � ��

���

���

� ��

���

���

 

�� = � �� � ��

�

���

�

���

− � ��

���

���

� ��

���

���

 

�� = � �� � ��

�

���

�

���

− � ��

���

���

� ��

���

���

 

Using these notations, the equation (�) can be written as: 

����(ȶ) = ��(0) + � − Λ�̇����(ȶ) − �̇�� �
ձ

�
��� ��

�

���

� + Ƃ �� ��

�

���

�� + Ϋ �� ��

�

���

�� (4) 

Solving the remaining five equations of the differential Eq. (1) yields the following solutions: 

ℋ���(ȶ) = ℋ�(0) + �̇�� �
ձ

�
��� ��

�

���

� + Ƃ �� ��

�

���

�� + Ϋ �� ��

�

���

��

− [(1 − Ω)� + Ω� + Λ]�̇��ℋ�(ȶ) 

����(ȶ) = ��(0) + (1 − Ω)��̇��ℋ�(ȶ) − (� + Λ)�̇����(ȶ) 

����(ȶ) = ��(0) + Ω��̇��ℋ�(ȶ) − (� + Λ)�̇����(ȶ) 

����(ȶ) = ��(0) + ��̇����(ȶ) − ������(ȶ) − Λ�̇����(ȶ) 

����(ȶ) = ��(0) + ӄ�̇����(ȶ) − ɣ�̇����(ȶ) − ��̇����(ȶ) (5)

Eq. (4) and (5) are recurrence solutions for given mathematical model of the system of equations. 

We investigated approximating iterative values with parametric values from Table 1. According to the 

World Health Organization (WHO) [23], 35% of India's population lives in cities or urban regions [24]. 

Therefore, we used a parameter (� = 481747192) that represents 35% of the overall population.  

Thus, the stated equation may be expressed as: 

� = �(0) + ℋ(0) + �(0) + �(0) + �(0) + �(0) 

�(0) = 480021700 

ℋ(0) = 1724266 

�(0) = 745 

�(0) = 413 

�(0) = 66 

�(0) = 1000000 

Based on the specifics shown in the inputs of the system of equation (3): 

�(ȶ) = �� + � − Λ�̇���(ȶ) − �̇�� �
�

�
(�� + Ƃ��) + Ϋ��� 
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ℋ(ȶ) = ℋ� + �̇�� �
ձ(�� + Ƃ��)

�
+ Ϋ��� − [(1 − Ω)� + Ω� + Λ]�̇��ℋ(ȶ) 

�(ȶ) = �� + (1 − Ω)��̇��ℋ(ȶ) − (� + Λ)�̇���(ȶ) 

�(ȶ) = �� + Ω��̇��ℋ(ȶ) − (� + Λ)�̇���(ȶ) 

�(ȶ) = �� + ��̇���(ȶ) + ��̇���(ȶ) − Λ�̇���(ȶ) 

�(ȶ) = �� + ӄ�̇���(ȶ) + ɣ�̇���(ȶ) − ��̇���(ȶ) 

The complete solution is provided by the series given below: 

�(ȶ) = �� + �� + �� + �� …. 

ℋ(ȶ) = ℋ� + ℋ� + ℋ� + ℋ� …. 

�(ȶ) = �� + �� + �� + �� …. 

�(ȶ) = �� + �� + �� + �� …. 

�(ȶ) = �� + �� + �� + �� …. 

�(ȶ) = �� + �� + �� + �� … . (6) 

Simultaneously solving distinct partitions yields these solution systems (taking ʋ� = ȶ). 

The values of the system with ȶ = 0 are as follows: 

�� = 480021700 

ℋ� = 1724266 

�� = 745 

�� = 413 

�� = 66 

�� = 1000000 (7) 

Now, �� = �ȶ − Λ��ȶ − �̇�� �
ձ

�
(���� + Ƃ����) + Ϋ����� 

By putting the value, we get, �� = 6931614ȶ − (0.014)(480021700)ȶ − 5.18 ×

10���[480021700 × 745 + 0.59 × 480021700 × 413] + 0.123 × 10��(480021700)(1000000) 

ℋ� = [5.18 × 10���(474583054139 + 5870907.63)]ȶ 

�� = [0.0043(1724266) − 0.1127(745)]ȶ 

�� = [0.00062(1724266) − 0.8683(413)]ȶ 

�� = [0.09871(745) + 0.8543(413) − 0.014(66)]ȶ 

�� = −9999.29ȶ (8) 
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These are the initial set of solutions for all equations with ȶ = ȶ�.  

Using the provided data, the simultaneous solution set for ȶ = ȶ� may be obtained. 

�� = −��[0.014 + 43956.44 × 10��� − 1229.91 × 10��]
ȶ�

3
 

ℋ� = [��{43956.44 × 10��� − 1229.91 × 10��} − (0.019347)ℋ�]
ȶ�

2
 

�� = [(0.004727)ℋ� − (0.1127)��]
ȶ�

2
 

�� = [(0.00062)ℋ� − (0.8683)��]
ȶ�

2
 

�� = [(0.09871)�� + (0.8543)�� − (0.014)��]
ȶ�

2
 

�� = [(0.000398)�� + (0.0001)�� − (0.01)��]
ȶ�

2
 (9) 

And solution for ȶ = ȶ� can be given by: 

�� = −��[0.014 + 5.18 × 10���{�� + (0.5944)��} + 0.123 × 10����]
ȶ�

6
 

ℋ� = [��{5.18 × 10���(�� + (0.5944)�� + 0.123 × 10����} − (0.019347)ℋ�]
ȶ�

6
 

�� = [(0.004727)ℋ� − (0.1127)��]
ȶ�

6
 

�� = [(0.00062)ℋ� − (0.8683)��]
ȶ�

6
 

�� = [(0.09871)�� + (0.8543)�� − (0.014)��]
ȶ�

6
 

�� = [(0.000398)�� + (0.001)�� − (0.01)��]
ȶ�

6
 (10) 

Putting values from Eq.  (7), (8), (9), and (10) in the system of equations (6),  

�(ȶ) = �� + �� + �� + �� …. 

ℋ(ȶ) = ℋ� + ℋ� + ℋ� + ℋ� …. 

�(ȶ) = �� + �� + �� + �� …. 

�(ȶ) = �� + �� + �� + �� …. 
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�(ȶ) = �� + �� + �� + �� …. 

�(ȶ) = �� + �� + �� + �� …. 

Conclusively we get, �(ȶ) = (480021700) − (5693202.83517)ȶ + (39514.82584)ȶ� −

(62563184.50875)ȶ� + ⋯ 

ℋ(ȶ) = (1724266) + (5871153.461256)ȶ − (56457.0089)ȶ� + (548.5999)ȶ� + ⋯ 

�(ȶ) = 745 + (8066.64213)ȶ + (13421.911)ȶ� − (593.1738)ȶ� + ⋯ 

�(ȶ) = 413 + (710.4421)ȶ + (1511.621)ȶ� − (449.1832)ȶ� + ⋯ 

�(ȶ) = 66 + (425.44325)ȶ + (698.6157)ȶ� + (868.8243)ȶ� + ⋯ 

�(ȶ) = 1000000 − (9999.2911)ȶ + (51.95567)ȶ� + (2.111346)ȶ� + ⋯ (11) 

 

4. RESULTS AND INTERPRETATIONS 

Our findings indicate that with effective social distancing measures, COVID-19 may be controlled after 

25-30 days of rigorous lockout (Fig. I). According to Fig. II, the number of exposed persons is projected 

to gradually grow over 4 months after illness onset. It is worth noting that this graph (Fig. III) is also 

dependent on the number of newly infected individuals. After 150 days (about 5 months), there was a 

significant rise in the number of exposed people, which had previously been insignificant up to the first 

50 days. Even if the illness epidemic had 50 crore suspects within 4-5 months. 
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Figure 1: Analyzing the Adomian decomposition approach to assess the COVID-19 epidemiology in the 

Indian population. 

(Fig. I) Chronoscopic demeanor of infection-prone individuals ��(ȶ)�, (Fig. II) Chronoscopic demeanor 

of vulnerable individuals �ℋ(ȶ)�, (Fig. III) Chronoscopic demeanor of diseased individuals ��(ȶ)�, 

(Fig. IV) Chronoscopic demeanor of progressively infected individuals ��(ȶ)�, (Fig. V) Chronoscopic 

demeanor of emancipated individuals ��(ȶ)�, (Fig. VI) Chropnoscopic demeanor of reservoir 

individuals ��(ȶ)�.  

 

Numbers can still be lowered to zero (Fig. IV). Fig. V shows that steady disease management might 

have been accomplished with appropriate and effective social distance, as evidenced by the consistent 

number of suspected recovered persons.  
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Our mathematical model's parameters can inform future pandemic control methods. Consider other 

considerations, such as gender stratification, age-related death risk, epidemiological characteristics, and 

smoking habit, when considering constraints. 

5. CONCLUSIONS  

This study aimed to determine the final numerical reality (month-by-month) of social distancing during 

the lockdown period, as well as the expected reduction in COVID-19 cases when the situation is under 

control. The discussion of clinical progression timelines, including pathogen entrance, life cycle, and 

recovery, can aid in epidemic analysis and control (Fig. II). In its early beginnings, the pathogen adheres 

to the cell surface after 5 minutes of infection and takes over the cell's function within 30 minutes. The 

virus attacks lung cells and reaches its peak stage in 10-13 days. At this point, the body's immune cells 

react and generate cytokines to eradicate the virus. The virus has an average incubation time of 5.1 days 

and patients typically recover after 2-3 weeks of infection. As a result, these models are quite useful for 

predicting. To effectively treat and manage COVID-19, healthcare facilities must have critical/intensive 

care units, ventilators, protective kits, and medications. Using the Adomian decomposition approach on 

the Indian population impacted by COVID-19, we can demonstrate that tight initial isolation for 22-25 

days has a considerable favorable influence on the overall pandemic scenario. Finally, the given 

mathematical model will take into account any further actions or activities that our government may 

need to do to reduce the illness burden. 
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